Supplementary Material

A. Implementation details

In this section, we provide implementation details that are not included in Section 4.1.

CIFAR-100-LT. To set up a fair comparison, we used the same random seed to make CIFAR-100-LT, and followed the
implementation of [l]. We trained ResNet-32 [7] by SGD optimizer with a momentum of 0.9, and a weight decay of
2 x 1074, Asin [1], we used simple data augmentation [7] by padding 4 pixels on each side and applying horizontal flipping
or random cropping to 32 x 32 size. We trained for 200 epochs and used a linear warm-up of the learning rate [6] in the first
five epochs. The learning rate was initialized as 0.1, and it was decayed at the 160th and 180th epoch by 0.01. The model was
trained with a batch size of 128 on a single GTX 1080Ti. We turned off CMO for the last three epochs in order to finetune
the model in the original input space.

For experiments in Table 11, we use the same strategy as for {CMO w/ Mixup}. For {CMO w/ Gaussian Blur} and {CMO
w/ Color Jitter}, which do not mix two images, we divided classes into two groups: the majority and the minority. Then, for
the minority group, we augmented the data with color jitter and gaussian blur, respectively. We set brightness to 0.5 and hue
to 0.3 for color jitter, and set kernel size as (5, 7) and sigma as (0.1, 5) for Gaussian blur using the PyTorch [9] implemented
functions.

ImageNet-LT. For ImageNet-LT, we followed most of the details from [I1]. Asin [I1], we performed simple horizontal
flips, color jittering, and took random crops 224 x 224 in size. We used ResNet-50 as a backbone network. The networks
were trained with a batch size of 256 on 4 GTX 1080Ti GPUs for 100 epochs using SGD and an initial learning rate of 0.1;
this rate decayed by 0.1 at 60 epochs and 80 epochs.

iNaturalist 2018. For iNaturalist 2018, we used the same data augmentation method as for ImageNet-LT. Multiple backbone
networks were experimented on iNaturalist 2018, including ResNet-50, ResNet-101, ResNet-152 [7], and Wide ResNet-
50 [12]. All backbone networks were trained with a batch size of 512 on 8 Tesla V100 GPUs for 200 epochs using SGD
at an initial learning rate of 0.1; this rate decayed by 0.1 at 75 epochs and 160 epochs. Experiments were implemented and
evaluated on the NAVER Smart Machine Learning (NSML) [8] platform.

B. Ablation studies

B.1. Comparison with oversampling methods

We compare CMO with other oversampling methods for performance improvement on CIFAR-100 with imbalance ratio
50 and 10 in Table 1. As in the imbalance ratio of 100, our method consistently improves performance in all long-tailed
recognition methods.

Table 1. Comparison against baselines on CIFAR-100-LT Results with classification accuracy (%) of ResNet-32. The best results are
marked in bold.

Imbalance ratio 50 10

Method Vanilla +ROS [10] +Remix [2] +CMO | Vanilla +ROS[I0] +Remix[2] +CMO

CE 44.0 39.7 45.0 48.3 56.4 55.6 58.7 59.5
(+0.0) (-4.3) (+1.0) (+4.3) (+0.0) (-0.8) (+2.3) (+3.1)
45.6 41.3 49.5 50.9 57.9 56.4 59.2 61.7

CE-DRW [1] +0.0)  (-43) (+39) (#53) | (:0.0) (15 (+13) (438
479 38.3 48.8 51.7 57.3 53.9 55.9 58.4

LDAM-DRW [1] (+0.0) (-9.6) (+0.9) (+3.8) (+0.0) (-3.4) (-1.4) (+1.1)

RIDE [11] 51.4 31.3 479 53.0 59.8 49.4 59.5 60.2
(+0.0) (-20.1) (-3.5) (+1.6) (+0.0) (-10.4) (-0.3) (+0.4)




B.2. Results on longer training epochs

We evaluate CMO using the same setting from PaCo [5]. That is, we train the network for 400 epochs and use AutoAug-
ment [3] on CIFAR-100-LT. For iNaturalist2018, RandAugment [4] is applied. Table 2, 3 reveals that {BS + CMO} surpasses
PaCo in most cases, and achieves a new state-of-the-art performance. These results demonstrate the effectiveness of CMO,
despite its simplicity.

Imbalance ratio 100 50 10 All Many Med Few
BS* 50.8 542 63.0 BS* 71.8 723 726 717
PaCo [5]" 520 56.0 642 PaCo [5]" 732 703 732 736
BS + CMO 51.7 56.7 653 BS+CMO 740 719 742 742

Table 2. Classification Accuracy on CIFAR-100-LT with Table 3. Classification Accuracy on iNaturalist2018. We

different imbalance ratios. We train ResNet-32 with Au- train ResNet-50 for 400 epochs with RandAugment [4]. “x”
toAugment [3] in 400 epochs. * is from [5] The best results indicates the results are from [5]. The best results are marked
are marked in bold. in bold.

B.3. Impact of «

We evaluate the impact of the hyperparameter alpha in Figure 1. The classification accuracy according to different o €
{0.1,0.25,0.5,1.0,2.0,4.0} is plotted. CMO improves the baseline accuracy (38.6%) in all cases. The best performance is
achieved when o = 1.0.

B.4. Computational cost

One of the biggest advantages of our method is its low computational cost. CMO only requires to load an additional batch of
data from the minor-class-weighted loader. We measure the training time per batch on ImageNet-LT (see Table 4). While CE
takes 0.355s, CE+CMO takes 0.369s, which is only an increase of 3.94%.
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Figure 1. Impact of o on CIFAR-100-LT with an imbalance
ratio of 100.



C. Pseudo-code of Context-rich Minority Oversampling

We present the PyTorch-syle pseudo-code of CMO algorithm in Algorithm 1. Note that CMO is easy to implement with just
a few lines that are easily applicable to any loss, networks, or algorithms. Thus, CMO can be a very practical and effective
solution for handling imbalanced dataset.

Algorithm 1 PyTorch-style pseudo-code for CMO

# original_loader: data loader from original data distribution

# weighted_loader: data loader from minor-class-weighted distribution

# model: any backbone network such as ResNet or multi-branch networks (RIDE)
# loss: any loss such as CE, LDAM, balanced softmax, RIDE loss

for epoch in Epochs:
# load a batch for background images from original data dist.
for xb, yb in original_loader:
# load a batch for foreground from minor-class-weighted dist.
x_f, y_.f = next (weighted_loader)

# get coordinate for random binary mask
lambda = np.random.uniform(0,1)

cx = np.random.randint (W) # W: width of images

cy = np.random.randint (H) # H: height of images

bbxl = np.clip(cx - int (W = np.sgrt(l. - lambda))//2,0,W)

bbx2 = np.clip(cx + int (W * np.sqgrt(l. - lambda))//2,0,W)

bbyl = np.clip(cy - int(H » np.sqrt(l. - lambda))//2,0,H)

bby2 = np.clip(cy + int(H * np.sqrt(l. - lambda))//2,0,H)

# get minor-oversampled images

xbl:, :, bbxl:bbx2, bbyl:bby2] = x f[:, :, bbxl:bbx2, bbyl:bby2]
lambda = 1 - ((bbx2 - bbxl) x (bby2 - bbyl) / (W  H))# adjust lambda
# output (x_.f is attached to x.b)

output = model (x.Db)

# loss

losses = loss (output, y-b) * lambda + loss(output, y_-f) » (1. - lambda)

# optimization step
losses.backward()
optimizer.step ()
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