
9. Supplementary
9.1. VO Prediction Error

We report Mean Absolute Error (MAE) Eq. (3) between ground-truth and estimated egomotion in Tab. 4.

MAE =
1

N

N∑
i=1

(|x− x̂|+ |y − ŷ|+ |z − ẑ|) +
1

N

N∑
i=1

|θ − θ̂| (3)

Dataset VO Embedding Train time Epoch Translation MAE (cm) Rotation MAE (centi-radians)
size(M) Encoder Size(M) 1FC 2FC Flip Swap Total Forward Left Right Total Forward Left Right

1 0.5 ResNet18 4.2 50 2.65 2.21 3.14 3.30 1.00 0.66 1.41 1.45

2 0.5 ResNet18 4.2 ✓ 43 2.45 1.82 3.17 3.37 0.90 0.56 1.30 1.39

3 0.5 ResNet18 4.2 ✓ ✓ 44 2.38 1.78 3.08 3.22 0.86 0.55 1.23 1.31

4 0.5 ResNet18 4.2 ✓ ✓ ✓ 48 2.60 2.22 3.06 3.12 0.90 0.66 1.21 1.2

5 0.5 ResNet18 4.2 ✓ ✓ ✓ 50 2.26 1.77 2.86 2.92 0.75 0.49 1.09 1.1

6 0.5 ResNet18 4.2 ✓ ✓ ✓ ✓ 50 2.26 2.02 2.56 2.56 0.75 0.55 0.98 1.03

7 1.5 ResNet18 4.2 ✓ ✓ 48 1.94 1.33 2.72 2.71 0.69 0.43 1.03 1.02

8 1.5 ResNet18 4.2 ✓ ✓ ✓ ✓ 50 1.7 1.48 1.94 2.02 0.61 0.48 0.75 0.81

9 1.5 ResNet50 7.6 ✓ ✓ ✓ ✓ 48 1.48 1.34 1.63 1.68 0.49 0.38 0.57 0.67

Table 4. Mean Absolute Error (MAE) between ground-truth and estimated egomotion for all types of actions in total and for each type of
actions separately (corresponding to Tab. 1).

9.2. Qualitative Results
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Figure 6. Success vs. path length. Our method performs worse on longer episodes. Fine-tuning on MP3D improves performance.

Complementary to Tab. 2 we provide additional qualitative results when integrating the navigation policy with our VO
model. On Gibson 4+ val scenes dataset (navigation trajectories illustrated in Fig. 7) our navigation agent follows a near-
perfect path for both: episodes with a relatively small geodesic distance to the target (row 1 – row 2) and episodes with a large
geodesic distance to the target (row 3 – row 4) and can do backtracking when the wrong way was chosen (top-down maps
(1), (2), (5) and (8)). We found that on Matterport3D (MP3D) (navigation trajectories illustrated in Fig. 8) the navigation
performance suffers (see Tab. 2). First of all, the Matterport3D navigation episodes are ‘longer’: 10.92m average geodesic
distance to goal on MP3D vs 5.89m average geodesic distance to goal on Gibson 4+. Larger scenes usually have more than
one way to the target place and if agent chooses longer way it affects navigation metrics (top-down maps (1), (2), (5) and
(8)). We also noticed that it is harder for agent to backtrack in larger scenes (top-down map (10)).



Figure 7. Our best HC 2021 PointNav agent’s (row 16 in Tab. 1) navigation trajectories on Gibson 4+ val scenes (and Gibson-v2 PointGoal
navigation episodes) broken down by geodesic distance between agent’s spawn location and target (on rows) vs SPL achieved by the
agent (on cols). The color of the trajectory changes from dark to light over time (cv2.COLORMAP WINTER for agent’s trajectory,
cv2.COLORMAP AUTUMN for agent’s estimate of its trajectory).



Figure 8. Our best HC 2021 PointNav agent’s (row 16 in Tab. 1) navigation trajectories on MP3D val scenes (and MP3D-v2 PointGoal
navigation episodes) broken down by geodesic distance between agent’s spawn location and target (on rows) vs SPL achieved by the
agent (on cols). The color of the trajectory changes from dark to light over time (cv2.COLORMAP WINTER for agent’s trajectory,
cv2.COLORMAP AUTUMN for agent’s estimate of its trajectory).



10. Simulation-to-reality Transfer

Episode name Run Path length (m) Navigation metrics Success

Shortest Agent’s dG SoftSuccess SoftSPL dG < 0.36 dG < 0.395 dG < 0.45 dG < 0.70

kitchen2couch 1 4.94 7.04 0.39 0.92 0.70 0 1 1 1
kitchen2couch 2 4.94 9.06 0.44 0.91 0.54 0 0 1 1
kitchen2couch 3 4.94 7.69 0.25 0.95 0.64 1 1 1 1

desk2bathroom 1 8.37 11.26 0.38 0.96 0.74 0 1 1 1
desk2bathroom 2 8.37 12.32 0.69 0.92 0.68 0 0 0 1
desk2bathroom 3 8.37 9.01 0.76 0.91 0.93 0 0 0 0

bed2desk 1 8.23 11.82 0.65 0.92 0.70 0 0 0 1
bed2desk 2 8.23 10.77 1.00 0.88 0.76 0 0 0 0
bed2desk 3 8.23 11.98 0.60 0.93 0.69 0 0 0 1

Average: 0.57 0.92 0.71 0.11 0.33 0.44 0.78

Table 5. Sim2real transfer. The shortest path length was calculated using RRT* [38] for 5000 iterations.

Policy Training. We use a similar training recipe as in the main paper to train our policy with the follow modifications. We
alter the simulated camera config (e.g., FOV, mounting height) to match the Intel RealSense D435 depth camera attached on
our robot. Additionally, we use all of Gibson [36], MP3D [5], and HM3D [25] for training scenes to increase diversity.
Visual Odometery Training. For visual odometry training, we again modify the camera config to match both the RGB and
depth cameras of the Intel RealSense D435. Note that we use the unaligned RGB and depth output from the camera (i.e., we
do not do a re-centered crop on the depth images) to leverage the fact that the depth camera’s field-of-view is larger than that
of the RGB camera and increase the amount of overlap between observations after a rotation action.
Deployment details. We use a LoCoBot [11] with the Kobuki base. We mount an Intel RealSense D435 camera 0.61 meters
from the ground with a tilt angle of 0 degrees. The policy only uses the RGB and depth images from the RealSense camera
as input. The depth images were de-noised using a median filter. Mapping and localization using the robot’s LiDAR are used
solely for visualization and calculating the lengths of the shortest path and the agent’s path.


