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A. Proof of Proposition 4

We consider a stronger version of Proposition 4:

Proposition 1. We have w⊤Diw =
∥∥yi −Rxi

∥∥2
2
, where

w is a quaternion representation of R of (8), and Di ∈
R4×4 is a positive semi-definite matrix whose entries de-
pend on xi, yi. So Problem (8) is equivalent to

min
w∈S3

h(w), h(w) =

ℓ∑
i=1

√
w⊤Diw. (1)

Moreover, Di has eigenvalues 4, 4, 0, 0 if xi and yi are nor-
malized (that is

∥∥xi

∥∥
2
=

∥∥yi

∥∥
2
= 1).

We first recall some basics about unit quaternions, an al-
gebraic construction invented by Hamilton in the 1840’s,
when the notion of vector does not exist; see the beautiful
account of [1]. In our current notation, each element w of
S3 is called a unit quaternion. The most crucial fact is that
SO(3) is isomorphic to the 3-sphere S3 up to sign, that is
SO(3) ≡ S3/{±1}. This implies a two-to-one correspon-
dence between unit quaternions and 3D rotations. Alge-
braically, any R ∈ SO(3) can be written as a 3× 3 matrix

w2
1 + w2

2 − w2
3 − w2

4 2(w2w3 − w1w4) 2(w2w4 + w1w3)
2(w2w3 + w1w4) w2

1 + w2
3 − w2

2 − w2
4 2(w3w4 − w1w2)

2(w2w4 − w1w3) 2(w3w4 + w1w2) w2
1 + w2

4 − w2
2 − w2

3

where w = [w1, w2, w3, w4]
⊤ ∈ S3. We can now write

the three entries of Rxi as quadratic forms w⊤Xi,1w,
w⊤Xi,2w, and w⊤Xi,3w, respectively. Here Xi,1, Xi,2,

and Xi,3 are 4× 4 symmetric matrices, defined as

Xi,1 =


[xi]1 0 [xi]3 −[xi]2
0 [xi]1 [xi]2 [xi]3

[xi]3 [xi]2 −[xi]1 0
−[xi]2 [xi]3 0 −[xi]1

 (2)

Xi,2 =


[xi]2 −[xi]3 0 [xi]1
−[xi]3 −[xi]2 [xi]1 0

0 [xi]1 [xi]2 [xi]3
[xi]1 0 [xi]3 −[xi]2

 (3)

Xi,3 =


[xi]3 [xi]2 −[xi]1 0
[xi]2 −[xi]3 0 [xi]1
−[xi]1 0 −[xi]3 [xi]2

0 [xi]1 [xi]2 [xi]3

 (4)

Defining Ci := [yi]1Xi,1 + [yi]2Xi,2 + [yi]3Xi,3, we get
that y⊤

i Rxi = w⊤Ciw. And defining

Di = (
∥∥yi

∥∥2
2
+
∥∥xi

∥∥2
2
)I4 − 2Ci (5)

with I4 the 4× 4 identity matrix, we obtain the equality∥∥yi −Rxi

∥∥2
2
=

∥∥yi

∥∥2
2
+

∥∥xi

∥∥2
2
− 2y⊤

i Rxi (6)

= w⊤Diw. (7)

Since Di is symmetric and w⊤Diw ≥ 0 for any w ∈ S3,
we know that Di ∈ R4×4 is positive semi-definite.

Suppose
∥∥yi

∥∥
2
=

∥∥xi

∥∥
2
= 1. Then there is at least two

different 3D rotations R1 and R2 satisfying yi = R1xi =
R2xi. Thus, with the factorization Di = ZiZ

⊤
i , there

are at least two quaternions w1 and w2 with w1 ̸= ±w2

satisfying that Z⊤
i w1 = Z⊤

i w2 = 0. So rank(Di) =
rank(Zi) ≤ 2. Recalling Di = 2I4 − 2Ci, we see that 1
is an eigenvalue of Ci that has multiplicity at least 2. Sim-
ilarly, we can derive that

∥∥yi +Rxi

∥∥2
2
= w⊤D′

iw where

D′
i = (

∥∥yi

∥∥2
2
+

∥∥xi

∥∥2
2
)I4 + 2Ci = 2I4 + 2Ci is positive

semi-definite of rank at most 2. That is, −1 is an eigen-
value of Ci of multiplicity at least 2. Concluding, Ci has
eigenvalues 1, 1,−1,−1 and Di has eigenvalues 4, 4, 0, 0.
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B. Proposition 5: Proof and Interpretation

Here we provide a proof (Appendix B.1) and probabilis-
tic interpretation (Appendix B.2) for Proposition 5. In this
section, we use the notation Di = ZiZ

⊤
i from Appendix

A where we decomposed every positive semidefinite matrix
Di into the product of its root Zi. Since we could always
normalize the point sets yi and xi, and then normalize Di,
we assume without loss of generality that Di has eigenval-
ues 1, 1, 0, 0 (cf. Proposition 1). In this situation, we can
now specify that Zi is a matrix of size 4 × 2 and it has or-
thonormal columns, i.e., Z⊤

i Zi = I2. Also, we see that the
objective function (9) of interest can be rewritten as

min
w∈S3

h(w), h(w) =

ℓ∑
i=1

∥∥Z⊤
i w

∥∥
2
. (8)

Note that, if Zi had a single column, then (8) is exactly the
problem of dual principal component pursuit (DPCP) [25].
On the other hand, one could think of (8) as a group ver-
sion of DPCP, as

∥∥Z⊤
i w

∥∥
2

here promotes group sparsity.
A similar group version of DPCP was considered by [11] in
the context of homography estimation. In [11], the authors
provided conditions under which any global minimizer of
(8) coincides with the ground-truth normal vector, or, in our
context, the ground-truth unit quaternion ±w∗. Thus, our
contribution here, if viewed from the angle of group-DPCP,
is to show that, there is actually an efficient algorithm that
exactly reaches the guaranteed ground-truth normal. We
present our contribution next.

B.1. Proof of Proposition 5

The proof follows from Proposition 4 of [17] with some
simplification for specializing arbitrary Stiefel manifolds to
S3, and with some modification to tighten a constant fac-
tor (from 2 to

√
2). We also note that ηmin and ηmax are

motivated from their corresponding definitions.
Write w := c0w0 + c∗w∗ with c20 + (c∗)2 = 1 and

w0 ∈ S∗. Without loss of generality assume c∗ ≥ 0. Then

dist(w,±w∗) = min
{√

2 + 2c∗,
√
2− 2c∗

}
=

√
2− 2c∗ (9)

≤
√
2− 2(c∗)2 =

√
2c0.

If i ∈ I∗ then by Proposition 4 we have∥∥Z⊤
i w∗∥∥

2
=

√
w⊤Diw =

∥∥yi −R∗xi

∥∥
2
= 0. (10)

Hence the difference h(w)− h(w∗) is equal to

c0
∑
i∈I∗

∥∥Z⊤
i w0

∥∥
2
+

∑
i∈[ℓ]\I∗

(∥∥Z⊤
i w

∥∥
2
−
∥∥Z⊤

i w∗∥∥
2

)
.

By (9) and the definition of ηmin (12), we know that

c0
∑
i∈I∗

∥∥Z⊤
i w0

∥∥
2
≥ k∗ηmin dist(w,±w∗)√

2
. (11)

By triangle inequality the second summation in the above
the difference h(w) − h(w∗) is smaller than or equal to∑

i∈[ℓ]\I∗

∥∥Z⊤
i (w −w∗)

∥∥
2
, but this bound satisfies∑

i∈[ℓ]\I∗

∥∥Z⊤
i (w −w∗)

∥∥
2
≤ (ℓ− k∗)ηmax dist(w,±w∗),

where we used dist(w,±w∗) =
√
2− 2c∗ =

∥∥w −w∗
∥∥
2

(9) and the definition of (13). We finished the proof.

B.2. Probabilistic Interpretation of Proposition 5

B.2.1 Technical Assumptions

We assume there is no noise for two reasons. First, analysis
for noisy data is more challenging and requires a full dif-
ferent chapter to penetrate. Second, analysis in the noise-
less case typically serves as a starting point for and sheds
enough light on analysis for noise. For example, see the tra-
jectory of the development from the noiseless case [25] to
the noisy case [12] in the context of DPCP.

Next, we discuss probabilistic assumptions on inliers.
For an inlier index i ∈ I∗, each column of Zi lies in
the ground-truth hyperplane S∗ ⊂ R4 that is perpendicu-
lar to the ground-truth unit quaternion ±w∗, and the two
columns of Zi span a subspace Si of dimension 2 that
is contained in S∗. Note that any Z ′

i ∈ R4×2 whose
columns are in Si ∩ S3 are equivalent to Zi in the sense
that

∥∥Z⊤
i w∗

∥∥
2
=

∥∥(Z ′
i)

⊤w∗
∥∥
2
= 0. To impose random-

ness assumptions on Zi, one could simply replace Zi by
a 4 × 2 random matrix whose columns are independently
sampled uniformly at random from the intersection Si∩S3.
In fact, we need a slightly stronger assumption:

Assumption 1 (randomness on inliers). For each i ∈ I∗,
every column of Zi is independently sampled uniformly at
random from the intersection S∗ ∩ S3.

This assumption destroys some good property of Zi: it
might not be orthonormal in general. However, it is or-
thonormal in expectation, i.e., it satisfies E[Z⊤

i Zi] = I2.
This will suffice for our later analysis.

On the other hand, Assumption 1 simplifies matters
by a lot. This can be appreciated in comparison with a
“common” approach, where one makes assumptions on the
“source data”, which are point pairs (yi,xi)’s in our case.
Let us first recall the “data flow” from (yi,xi) to Zi:

(yi,xi)
Proposition 17−−−−−−−→ Di

factorizing Di7−−−−−−−→ Zi (12)



In view of the above flow (or graphical model), one intu-
itively (not very rigorously) feels that, if (yi,xi)’s are inde-
pendent, then Zi’s are independent; the latter is implied by
Assumption 1. On the other hand, it seems hard to know the
distribution of Zi’s, even if the distribution of (yi,xi)’s is
given or assumed. It is via Assumption 1 that this challenge
is circumvented and that our theorems are developed.

Finally, we need randomness on outliers:

Assumption 2 (randomness on outliers). Each column of
any outlier Zj , where j ∈ [ℓ]\I∗, is independently sampled
uniformly at random from S3.

Since an outlier Zj could be distributed arbitrarily, this
assumption is the most natural, if not the most challeng-
ing, as the outliers try their best to mimic the distribution
of inliers. Assumptions 1 and 2 (together with the noiseless
assumption) are all we need for the next section.

B.2.2 Probabilistic Interpretation

Recall that the quantities ηmin, ηmax of interest are equal to

ηmin =
1

k∗
min

w∈S∗∩S3

∑
i∈I∗

∥∥Z⊤
i w

∥∥
2
, and (13)

ηmax =
1

ℓ− k∗
max
w∈S3

∑
j∈[ℓ]\I∗

∥∥Z⊤
j w

∥∥
2
. (14)

The following proposition gives probabilistic upper and
lower bounds for ηmax and ηmin respectively.

Proposition 2. Under the assumptions of §B.2.1, we have

(i) With probability at least 1− exp(−ζ2/2) it holds that

ηmax ≤ 1√
2
+

(4 + ζ)√
ℓ− k∗

. (15)

(ii) With probability at least 1− exp(−ζ2/2) it holds that

ηmin ≥
√

2

3
− (4 + ζ)√

k∗
(16)

To prove Proposition 2 (cf. Appendix B.2.3), we com-
bine the proof strategies of [17] and [31], where both sets of
the authors found inspirations from [16]. We can now see
that the condition of Proposition 5, α∗ := k∗ηmin/

√
2 −

(ℓ− k∗)ηmax > 0, holds with high probability as long as√
2

3
k∗ − (4 + ζ)

√
k∗ ≥ 1√

2
(ℓ− k∗) + (4 + ζ)

√
ℓ− k∗.

Ignoring lower-order terms we get the condition

k∗ ≳

√
3

2
(ℓ− k∗) ⇔ k∗

ℓ
≳

√
3√

3 + 2
, (17)

which holds true whenever there are sufficiently many in-
liers. This condition ensures the α∗-sharpness, from which
local linear convergence to ±w∗ from a good enough ini-
tialization with proper stepsize ensues.

B.2.3 Details: Proof of Proposition 2

We need the following simple result, with its proof omitted.

Lemma 1. If z = [z1, z2, z3, z4]
⊤ sampled uniformly at

random from S3, we have for any w ∈ S3 that

E
[
(z⊤w)2

]
=

1

4
. (18)

On the other hand, if ẑ is sampled uniformly at random from
S3 ∩ S where S is a linear subspace of R4 of dimension 3,
then we have for every ŵ ∈ S3 ∩ S that

E
[
(ẑ⊤ŵ)2

]
=

1

3
. (19)

Upper Bounding ηmax (i). We first prove (i) of Proposition
2. Consider matrix Z ∈ R4×2 whose columns are sampled
independently and uniformly at random from the 3-sphere
S3. We will give upper bounds respectively for

(ℓ− k∗) max
w∈S3

E
[∥∥Z⊤w

∥∥
2

]
and (20)

max
w∈S3

∑
j∈[ℓ]\I∗

(∥∥Z⊤
j w

∥∥
2
− E

[∥∥Z⊤w
∥∥
2

])
, (21)

while summing the two bounds gives an upper bound for
(ℓ− k∗)ηmax. For (20), Jensen’s inequality gives

max
w∈S3

E
[∥∥Z⊤w

∥∥
2

]
≤ max

w∈S3

√
E
[∥∥Z⊤w

∥∥2
2

]
(22)

= max
w∈S3

√
2 · 1

4
=

1√
2
. (23)

To obtain (23) we used (18) and the linearity of the expecta-
tion. The second term (21) is harder to handle, and we first
consider its expectation E[(21)]. We know from a standard
symmetrization argument (cf. [15], Lemma 11.4 of [7]) that,
since Zj’s are independent (Assumption 2), the expectation
E[(21)] has the following bound:

E[(21)] ≤ 2 E
[
max
w∈S3

∑
j∈[ℓ]\I∗

rj
∥∥Z⊤

j w
∥∥
2

]
, (24)

where rj’s are independent Radeamacher random variables
which take values 1, −1 with probabilities 1/2 each and in-
dependent of Zj’s. We also know from the vector contrac-
tion inequality (cf. Corollary 1 of [19]) that the right-hand



side of (24), and thus E[(21)], is has the following bound:

E[(21)] ≤ 2
√
2 E

[
max
w∈S3

∑
j∈[ℓ]\I∗

(
rj1Z

⊤
j1w + rj2Z

⊤
j2w

)]

= 2
√
2 E

[∥∥∥ ∑
j∈[ℓ]\I∗

(
rj1Zj1 + rj2Zj2

)∥∥∥
2

]
(25)

where Zj1’s and Zj2’s are the first and second columns
of Zj respectively, while rj1’s and rj2’s are independent
Radeamacher random variables that are also independent of
entries of Zj’s. Applying Jensen’s inequality to (25) we get

E[(21)] ≤ 2
√
2

√√√√E
[∥∥∥ ∑

j∈[ℓ]\I∗

(
rj1Zj1 + rj2Zj2

)∥∥∥2
2

]

= 2
√
2

√√√√E
[ ∑
j∈[ℓ]\I∗

(
r2j1Z

⊤
j1Zj1 + r2j2Z

⊤
j2Zj2

)]
= 4

√
ℓ− k∗

To summarize, we have E[(21)] ≤ 4
√
ℓ− k∗. Treat now

(21) as a function of Zj’s. It is straightforward to verify
that this function has bounded difference 2 (cf. [20]). Since
Zj’s are independent (Assumption 2), Mcdiarmid’s Lemma
[20] or the bounded difference inequality is applicable, from
which we obtain the following probability bound:

P
(

(21) ≥ E[(21)] + ζ0

)
≤ exp

(
− ζ20

2(ℓ− k∗)

)
. (26)

With E[(21)] ≤ 4
√
ℓ− k∗ and ζ := ζ0/

√
(ℓ− k∗), we get

P
(

(21) ≤ (4 + ζ)
√
ℓ− k∗

)
≥ 1− exp

(
− ζ2

2

)
. (27)

Combining this with (23) finishes proving (i).

Lower Bounding ηmin (ii). Let U ∈ R4×3 have orthonor-
mal columns and have S∗ as its column space, then there is
a unique v ∈ S2 so that Uv = w for any w ∈ S3. Also,
since for any i ∈ I∗ every column of Zi is in S∗, there
is a unique Ai ∈ R3×2 with orthonormal columns satisfy-
ing Zi = UAi. Moreover, by rotation invariance we know
that each column of Ai is uniformly distributed on S2. As a
result, we get Z⊤

i w = A⊤
i v,∀i ∈ I∗, and ηmin is equal to

ηmin =
1

k∗
min
v∈S2

∑
i∈I∗

∥∥A⊤
i v

∥∥
2
. (28)

Now, lower bounding ηmin can be done in a similar way
to upper bounding ηmax; thus we only give a proof sketch
next. Similarly to (20) and (21), to bound ηmin we will find

lower bounds respectively for the two terms

k∗ min
v∈S2

E
[∥∥A⊤v

∥∥
2

]
and (29)

min
v∈S2

∑
i∈I∗

(∥∥A⊤
i v

∥∥
2
− E

[∥∥A⊤v
∥∥
2

])
, (30)

where A is an i.i.d. copy of Ai. Similarly to (23), the first
term here is bounded using (19) and Jensen’s inequality:

min
v∈S2

E
[∥∥A⊤v

∥∥
2

]
≤

√
2

3
(31)

Using the symmetric argument, the vector contraction in-
equality, and Jensen’s inequality, the expectation E[(30)] of
the second term (30) is bounded below by −4

√
k∗. Simi-

larly, invoking Mcdiarmid’s Lemma gives that

P
(

(30) ≤ E[(30)]− ζ0

)
≤ exp

(
− ζ20

2k∗

)
(32)

⇒ P
(

(30) ≥ −(4 + ζ)
√
k∗

)
≥ 1− exp

(
− ζ2

2

)
(33)

where ζ0 is any positive constant and we set ζ := ζ0/
√
k∗.

Combining (31) with the above bound finishes the proof.

C. Proof of Proposition 1
Since b∗ is the rotation axis of R∗, we have (R∗)⊤b∗ =

b∗. Recall vi = yi − xi for every i ∈ I. If i ∈ I∗ then

v⊤
i b

∗ = (yi − xi)
⊤b∗ = (yi −R∗xi)

⊤b∗, (34)

and further more if (yi,xi) is an inlier pair we get that

|v⊤
i b

∗| = ϵ⊤i b. (35)

Clearly ϵ⊤i b is a Gaussian random variable with zero mean
and variance σ2. The rest of the proof follows from a stan-
dard probability calculation.

D. Interval Stabbing
Here we provide proofs for Propositions 2 and 3. Along

the way we will need multiple temporary variables to illus-
trate the idea; we use ai,j’s to denote those variables. Here,
i denotes the i-th point pair, and j denotes the order in which
ai,j appears for the first time. In §4.2.1 we reviewed inter-
val stabbing for closed intervals Ji of the form [a, b]. One
should note and verify that this can be easily extended to the
case where Ji is a finite (disjoint) union of closed intervals.

D.1. Proof of Proposition 2

Recall b = [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)]⊤ with
θ ∈ [0, π], ϕ ∈ [0, π]. Denote by ai,1 := [vi]1 cos(ϕ) +
[vi]2 sin(ϕ), then |v⊤

i b| ≤ c is equivalent to

|ai,1 sin(θ) + [vi]3 cos(θ)| ≤ c. (36)



Without loss of generality we can assume that ai,1 ≥ 0. So
there is a unique ai,2 ∈ [0, π] which satisfies

cos(ai,2) =
[vi]3√

[vi]23 + a2i,1

, sin(ai,2) =
ai,1√

[vi]23 + a2i,1

.

Hence (36) is equivalent to

| cos(θ − ai,2)| ≤ ci, ci := min

{
1,

c√
[vi]23 + a2i,1

}

Since the trigonometric function arccos : [0, π] → [−1, 1]
is decreasing and |θ − ai,2| ≤ π, the above is equivalent to

ai,3 := arccos(−ci) ≥ |θ − ai,2| ≥ arccos(ci) =: ai,4.

Define ai,5 = ai,2 − ai,3, ai,6 = ai,2 − ai,4, ai,7 = ai,2 +
ai,4, and ai,8 = ai,2 + ai,3. Then |v⊤

i b| ≤ c is the same as

θ ∈
(
[ai,5, ai,6] ∪ [ai,7, ai,8]

)
∩ [0, π] (37)

To summarize, given ϕ ∈ [0, π], the i-th constraint of (5) re-
quires θ to lie in the union of some disjoint intervals defined
in (37). So maximizing (6) amounts to finding a maximal
set of intervals of the form (37) that overlap a point θ, and
can be solved by interval stabbing in O(ℓ log ℓ) time.

D.2. Proof of Proposition 3

Assume that the rotation axis b of the 3D rotation

R = bb⊤ + [b]× sin(ω) + (I3 − bb⊤) cos(ω) (38)

is given, and we now solve (7). Let ai,9 = y⊤
i bb

⊤xi,
ai,10 = y⊤

i [b]×xi and ai,11 = y⊤
i (I3 − bb⊤)xi. Then

y⊤
i Rxi = ai,9 + ai,10 sin(ω) + ai,11 cos(ω). (39)

Hence the constraint of (4) can be written as∥∥yi

∥∥2
2
+
∥∥xi

∥∥2
2
− c2 ≤ 2y⊤

i Rxi (40)

⇔ ai,10 sin(ω) + ai,11 cos(ω) ≥ ai,12 (41)

where we defined ai,12 = (
∥∥yi

∥∥2
2
+

∥∥xi

∥∥2
2
− c2)/2− ai,9.

There is a unique angle ai,13 ∈ [0, 2π) satisfying

cos(ai,13) =
ai,11√

a2i,10 + a2i,11

, sin(ai,13) =
ai,10√

a2i,10 + a2i,11

Thus, the constraint
∥∥yi −Rxi

∥∥
2
≤ c of (4) is the same as

cos(ω − ai,13) ≥ max

{
ai,12√

a2i,10 + a2i,11

,−1

}
=: ai,14.

Without loss of generality assume ai,14 ≤ 1, for other-
wise we could simply ignore this constraint. Define ai,15 =
arccos(ai,14) ∈ [0, π]. Since |ω − ai,13| ∈ [0, 2π], we con-
sider two cases, namely |ω−ai,13| ≤ π and |ω−ai,13| > π.
In the former case, since arccos is a decreasing function, the
above constraint is equivalent to |ω − ai,13| ≤ ai,15. In the
later case the above constraint is equivalent to

cos(2π − |ω − ai,13|) ≥ ai,14 ⇔ 2π − |ω − ai,13| ≤ ai,15.

Thus, the constraint
∥∥yi −Rxi

∥∥
2
≤ c of (4) requires ω ∈

[0, 2π] to lie in the union of the following intervals.

[ai,13 − ai,15, ai,13 + ai,15] ∩ [0, 2π] (42)
[ai,13 − ai,15 + 2π, 2π] (43)
[0, ai,13 + ai,15 − 2π]. (44)

In the above, the invalid interval where the right endpoint
is smaller than its left endpoint, if any, should be discarded.
To conclude, (7) can be solved via interval stabbing.

E. More Experiments
In this section we present more experiments. Besides

rotation errors, we will also use another metric for evalua-
tion, that is success rate. Given two point clouds as input,
an algorithm succeeds if it outputs a rotation that has error
smaller than a certain threshold; by default the threshold is
set to 10 degree (as in [28]) but we will also vary it when ap-
propriate. The success rate is the number of success divided
by the total number of experiments that were run. This met-
ric was referred to as recall in other related papers (cf. [9]).

Note that, like GORE [8] and QUASAR [27], ARCS+OR
can be applied to image stitching, because sometimes the
translation is negligible and thus the scene can be justified
by a homography H ∈ R3×3 that involves a pure 3D rota-
tion R, i.e., H = KRK−1 (cf. [24]); here K ∈ R3×3

is a matrix of intrinsic camera parameters given by the
dataset. However, we noticed that the recent approaches
MAGSAC++ [2–4] and VSAC [14] achieved surprising per-
formance and run in fewer than 10 milliseconds for image
stitching, hence we would recommend them for this task.

E.1. Robustness on Gaussian Point Sets

In previous synthetic experiments on robust rotation
search (Table 4), we generated data by ensuring that each
point pair yi and xi has nearly the same norm. This is for
fair comparison of the methods, and it might not be true in
practice. Here we show that, without this norm constraint,
ARCS+OR can tolerate even more outliers. In the experiment
here we generated point sets {yi,xi}ℓi=1 as in Table 4 ex-
cept without the norm constraint. Then, we first perform
a simple step, that removes all point pairs (yi,xi) which
satisfy

∣∣∥∥yi

∥∥
2
−

∥∥xi

∥∥
2

∣∣ > c, and then feed the remaining
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Figure 1. Performance of ARCS+OR on Gaussian point sets with
ℓ = 107 point pairs, σ = 0.01, 100 trials. ARCS+OR works well
until there are fewer than 500/107 = 0.005% inliers.

points to ARCS+OR. We reported the results in Figure 1,
where we observed that ARCS+OR worked well until there
are fewer than 500/107 = 0.005% inliers.

E.2. Sensitivity to The Ground-Truth Rotation

In Figure 2 we presented the sensitivity of ARCS+OR to
the ground-truth rotation R∗. Figure 2a depicted that, with
the ground-truth rotation angle ω∗ changing, the mean es-
timation error of ARCS+O varied from 0.5 to 1, while the
standard derivation ranged from 0 to 0.5. One the other
hand, ARCS+R refined the estimate from ARCS+O, so that
their combination ARCS+OR had much smaller mean error
and standard derivation, nearly imperceivable from Figure
2a. In Figure 2b we kept ω∗ fixed and presented how the er-
rors of ARCS+OR vary with θ∗ and ϕ∗, the two angles for the
ground-truth rotation axis b∗; we fixed one of them when
varying the other. We observed that ARCS+OR is immune to
the change of ϕ∗, as it consistently gave about 0.02 errors
and 0.01 standard derivation. This is expected as ARCS+O
selects from multiple ϕj’s a best one based on consensus
maximization. On the other hand, varying ϕ∗ does make an
impact on the performance of ARCS+OR; the standard devi-
ation reached its peak, around 0.04, when θ∗ = π/4. The-
oretically justifying the phenomenon presented here can be
an interesting future work.

E.3. Phase Transition

In Figure 3, we showed the performances of algorithms
for different inlier ratios k∗/ℓ and different number ℓ of
points; whiter means smaller errors and errors larger than
1 were truncated to 1. The major point we would like to
clarify here is that, whether or not an algorithm can tolerate
say 99% outliers might depend on the total number of points
(cf. Figures 3a and 3d), so sentences such as “our algorithm
can tolerate 99% outliers” might be inaccurate, even though
such description has been widely used in recent papers. In-
deed, no algorithm can tolerate 99% outliers if ℓ = 100.
Also, as mentioned in §4.3, one theorem of [6] has shed
light on this phenomenon. The other important observa-
tion here is that, GNC-TLS achieved higher accuracy than
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Figure 2. Average rotation errors (in degrees) and standard de-
viations with respect to the ground-truth rotation angle ω∗ and
axis b∗ = [sin(θ∗) cos(ϕ∗), sin(θ∗) sin(ϕ∗), cos(θ∗)]⊤. Ex-
periments run with 100 trials, ℓ = 105, k∗ = 1000, σ = 0.01.

(a) GNC-TLS [26] (b) FGR [30] (c) RANSAC

9e4

7e4

5e4

3e4

1e4

1%3%5%7%9%

Inlier Ratio k∗/ℓ

ℓ

0.1

0.5

1

(d) ARCS+R

1%3%5%7%9%

Inlier Ratio k∗/ℓ

(e) ARCS+OR

Figure 3. Average rotation errors in degrees of different robust
rotation search approaches on medium-scale synthetic 3D point
sets of sizes varying from 104 to 9× 104 with inlier ratios ranging
from 1% to 9%. Experiments run with 50 trials, σ = 0.01 fixed.

ARCS+R, although they exhibited nearly the same breaking
down points. One reason is that GNC-TLS takes advantage
of the inlier threshold c as extra information. This empiri-
cally suggests that combing ARCS+O and GNC-TLS might
further boost the performance for robust rotation search.

E.4. Robustness to Noise

Figure 4 showed that ARCS+N is sensitive to noise: In
particular, for c = 5.54σ fixed, the number ℓ of output
point pairs grows proportionally as a linear function of σ.
A similar phenomenon can be found in [28] and its follow-
up works: Higher noise leads to denser graphs, and thus to
intractable maximal clique problems (recall Section 1).

However, ARCS+O and ARCS+OR behave reasonably
well as noise varies. This was shown in Figure 5, where we
observed that, for k∗/ℓ = 100/1000, ARCS+OR are com-
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Figure 5. Robustness of various methods to noise. 20 trials.

petitive to TEASER++ in terms of accuracy (Figure 5a) and
to RANSAC in terms of speed (Figure 5b); 10% inliers are
enough for RANSAC to be fast. Also note that the running
time of TEASER++ increases exponentially as noise grows,
and that GORE would achieve higher accuracy if some local
refinement methods were applied.

E.5. Procrustes’s Experiments on Stanford Bunny

Here we use ARCS+ for simultaneous search of rota-
tion & correspondences on a popular benchmark, the Stan-
ford Bunny dataset [10].1 Bunny has 35947 points with
every coordinate of the points located in [−1, 1] (Figure
6a). We randomly cut it into two parts, Q and P , of sizes
m and n respectively and of different overlapping ratios
k∗/max{m,n} = k∗/m (Figures 6b-6c or 6e-6f). For
simplicity we set n = ⌈35947/2⌉ = 17974 and, m =
⌊35947/2⌋ + k∗, so the exact values of m and k∗ can be
calculated as per a given overlapping ratio k∗/m. We then
randomly rotated P and added 1% random Gaussian noise
to it. The goal is to align P and Q. ARCS+ can be applied
directly to this task (Figures 6d or 6g). For comparison,
we gave GORE and TEASER++ the correspondences estab-
lished by FPFH. For all methods we set c = 5 × 10−5.
Figure 7 showed the results for different overlapping ratios,
from which we made a few observations: ARCS+ achieved
higher success rates in all experiments, while the perfor-
mance of FPFH, and thus of TEASER++ and GORE, im-
proved as the overlapping ratios increased. We did not put

1In view of our opening quote, Bunny here is a victim of Procrustes.

(a) Bunny (b) Input (Q) (c) Input (P) (d) ARCS+

(e) Input (Q) (f) Input (P) (g) ARCS+

Figure 6. Bunny (6a) was cut through its body into two parts, Q
(6b) and P (6c), with k∗/m = 1997/19970 = 10% overlap-
ping points in blue. P was randomly rotated and corrupted by 1%
random noise. ARCS+ successfully aligned Q and P (6d). For a
different cut through the ear of Bunny (6e-6f), ARCS+ failed (6g).

0%
10%

60%

0 2 4 6 8 10

Threshold (Rot. Deg.)

Su
cc

es
s

R
at

e

TEASER++
GORE
ARCS+

(a) k∗/m = 5%

0%

60%

75%

0 2 4 6 8 10

Threshold (Rot. Deg.)

Su
cc

es
s

R
at

e

TEASER++
GORE
ARCS+

(b) k∗/m = 10%

0%

70%
80%

0 2 4 6 8 10

Threshold (Rot. Deg.)

Su
cc

es
s

R
at

e

TEASER++
GORE
ARCS+

(c) k∗/m = 20%

0%

70%
80%

0 2 4 6 8 10

Threshold (Rot. Deg.)

Su
cc

es
s

R
at

e

TEASER++
GORE
ARCS+

(d) k∗/m = 30%

Figure 7. Success Rates of the methods on Stanford Bunny with
different overlapping ratios k∗/m. 1000 trials. In each trial,
Bunny was randomly cut into two parts Q and P , and P was then
rotated randomly and corrupted by 1% random Gaussian noise.

RANSAC into comparison here, because FPFH often gave
few to none inlier pairs for small k∗/m and so RANSAC
used much longer time to reach a confidence of 0.99.

F. Handling The Translation Case
Utilizing ideas that have been known in prior works, it

is easy to extend our algorithms to the situation where there
is an extra unknown translation. As we did for Problems 1
and 2, we first define the two problems that we will discuss:

Problem 1 (simultaneous pose and correspondences). Let
the two point sets Q and P of Problem 1 instead satisfy

qi = R∗pj + t∗ + oi,j + ϵi,j , (45)



where t∗ ∈ R3 is an extra unknown translation vector. The
task is to simultaneously estimate the rotation R∗, transla-
tion t∗, and correspondences C∗ from Q and P .

Problem 2 (robust registration). Let the ℓ pairs of 3D points
{(yi,xi)}ℓi=1 of Problem 2 instead satisfy

yi = R∗xi + t∗ + oi + ϵi. (46)

The task is to find R∗, t∗, and correspondences I∗.

We will discuss more about Problem 1 in our future
work; here we focus on the its special case, Problem 2.
Specifically, we next extend our ARCS+OR algorithm to han-
dle Problem 2 (Appendix F.1), and present its performance
on the 3DMatch dataset [29] (Appendix F.2).

F.1. Extension for Robust Registration

Here we present an extension of our ARCS+OR algorithm
for solving Problem 2. In this extension, we essentially
combine ARCS+OR with known techniques. Thus, the pre-
sentation here serves more as an useful demonstration of
concepts, and less as an entirely novel insight into, or the
most efficient method for, solving Problem 2. Nevertheless,
we will show in Appendix F.2 that our extension does enjoy
state-of-the-art performance on the 3DMatch dataset [29].

We first review three crucial ingredients that are useful
for solving Problem 2: translation elimination (TE), rota-
tion elimination (RE), and outlier removal.
Translation Elimination (TE). For each i, j ∈ [ℓ], i > j,
define yij = yi − yj and xij = xi − xj , then

yij = R∗xij + (oi − oj) + (ϵi − ϵj). (47)

Here (yij ,xij) is referred to in the literature as translation
invariant measurements, as (47) no longer involves trans-
lation. As a consequence, robust rotation search might be
performed over {(yij ,xij)}i>j , yielding an estimate of ro-
tation and correspondences. After this, the translation can
be easily computed. A disadvantage here is that computing
all (yij ,xij)’s needs O(ℓ2) time; also note though that this
computation can be implemented in parallel and thus can be
efficient for medium-size datasets (e.g., ℓ ≤ 3× 104).
Rotation Elimination (RE). Every inlier (yi,xi) satisfying
(46) with oi = 0 also necessarily satisfies∥∥xi + ϵi

∥∥
2
=

∥∥yi − t∗
∥∥
2
⇔

∥∥xi

∥∥
2
≈

∥∥yi − t∗
∥∥
2
. (48)

If there were no outliers, estimating t∗ from relation (48)
is the problem of source localization that appears in sig-
nal processing applications [5]. Estimating translation from
(48) in the presence of outliers is more challenging. A pos-
sible algorithm is combining the least-squares solvers of [5]
with an iterative reweighting strategy, but this does not have
global optimality guarantee. The other approach, which we

employ, is to estimate t∗ via branch & bound, solving the
following optimization problem:

max
I⊂[ℓ],t∈R3

|I| (49)

s.t.
∣∣∥yi − t∥2 − ∥xi∥2

∣∣ ≤ c, ∀i ∈ I

If directly applying branch & bound to (49), one would
branch over R3 (cf. [18]). On the other hand, our develop-
ment in §4.2 implies that branching over R2, where the first
two coordinates of t lie, suffices, as the third coordinate can
be determined by interval stabbing. In short, we solve (49)
via branching over the two-dimensional space R2 if needed.
As a matter of fact, branch & bound runs much faster even
if the parameter space has smaller dimension.

Remark 1 (TE versus RE). Translation elimination (TE)
yields O(ℓ2) measurements, leads to the problem of robust
rotation search, and is also used in the 2D-3D perspective-
three-point problem (see, e.g., [22]); many recent papers on
3D-3D registration used TE (see, e.g., [28] and its follow-
up works). RE yields O(ℓ) measurements, leads to a less
familiar problem, and receives fewer attention; [18] is the
only paper, which we know, that uses RE (for Problem 1).

Outlier Removal. Even though rotation or translation can
be estimated independently of each other (using TE or RE
respectively), they might not be able to handle the case of
extreme outlier rates. In particular, if using TE then the in-
lier ratio decreases from k∗/ℓ to O

(
(k∗/ℓ)2

)
. This is why

an outlier removal procedure is needed prior to estimation.
For this, create (in mind) a graph G with ℓ vertices repre-
senting the ℓ point pairs {(yi,xi)}ℓi=1. Moreover, create
an edge between two vertices i and j, if |yij − xij | ≤ 2c,
where yij and xij are defined in (47). Then, find a maxi-
mum clique of G, and remove all point pairs whose corre-
sponding vertices are not contained in the maximum clique.
See [21,23,28] for more transparent discussion on this idea.

For implementation, we use the code of [21] to create G
and compute a maximum clique of it.
Algorithms. Having reviewed the three ingredients, we
are ready to extend ARCS+OR for Problem 2. We have
two extensions, (ARCS++OR)TE and (ARCS++OR)RE, sum-
marized in Table 1. Both of them have the same first step,
outlier removal via finding a maximum clique from the
constructed graph. Their next steps proceed by working
with point pairs that survive from outlier removal. Step 2
of (ARCS++OR)TE is to eliminate the translation (TE), and
step 3 is to estimate the rotation via ARCS+OR from the
point pairs {(yij ,xij)}i>j (47). Step 4 of (ARCS++OR)TE

would estimate the translation from the remaining point
pairs, with an estimated rotation given by ARCS+OR. But
we leave step 4 unspecified, as translation estimation in this
situation is straightforward. On the other hand, step 2 of
(ARCS++OR)RE is to eliminate the rotation (RE), step 3 is



Table 1. Two Extensions of ARCS++OR for Problem 2.

(ARCS++OR)TE (ARCS++OR)RE

Step 1 Outlier Removal
Step 2 TE RE
Step 3 ARCS+OR (47) Branch & Bound (49)
Step 4 — ARCS+OR
Step 5 Local Refinement (optional)

to compute a translation t̂ by solving (49), and step 4 is to
estimate the rotation via ARCS+OR, operating on point pairs
(yi − t̂,xi)’s. Finally, one might use an extra step 5, to
refine the solution, e.g., by singular value decomposition.

F.2. Experiments on 3DMatch

Data. The 3DMatch dataset [29] contains more than 1000
point clouds for testing, representing 8 different scenes
(such as kitchen, hotel, etc.), while the number of point
clouds for each scene ranges from 77 to 506. Each point
cloud has more than 105 points, yet in [29] there are
5000 keypoints for each cloud. We used the pretrained
model2 of the 3DSmoothNet [13] to extract descrip-
tors from these key points, and matched them using the
Matlab function pcmatchfeatures, with its parameter
MatchThreshold set to the maximum 1. It remains to
solve Problem 2 using these hypothetical correspondences.
Metrics. We report success rates of the methods. Success
rates were defined in the beginning of Appendix E. The de-
fault threshold 10 on rotation degrees is the one that was
used in TEASER++ [28]. We do not report errors in terms
of translation for two reasons: i) rotation search is the main
theme of the paper, ii) if the rotation is estimated accurately,
then so will be the translation (see, e.g., algorithms of [28]).
Methods. We apply (ARCS++OR)TE and (ARCS++OR)RE to
restore the rotation and translation from these correspon-
dences. We use singular value decomposition as an ex-
tra step 5 for (ARCS++OR)RE to refine the solution and ac-
count for inaccuracy of translation estimation via branch &
bound (49). For reference, we also apply (ARCS++OR)∗,
which uses the ground-truth translation t∗ and point pairs
(yi − t∗,xi)’s to estimate a rotation via ARCS++OR.

We compare our algorithms with TEASER++ [28].
Similarly, we use three versions of TEASER++. The
first version is (TEASER++)TE. This is the standard
TEASER++, and the difference between (TEASER++)TE

and (ARCS++OR)TE is that, (TEASER++)TE estimates the
rotation by GNC-TLS, not ARCS++OR. The second version
is (TEASER++)TE, where we treat TEASER++ as a robust
rotation search method and let it play the role of ARCS++OR
in (ARCS++OR)RE. The third version is (TEASER++)∗,

2https://github.com/zgojcic/3DSmoothNet
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Figure 8. Success rates of TEASER++ and ARCS++OR on the 3D
Match dataset, using either estimated translation (Fig. 8a) or TIMs
(Fig. 8b) or ground-truth translation (Fig. 8c).

where we assume the ground-truth translation t∗ is given
and run TEASER++ on (yi − t∗,xi)’s. Finally, we did
not compare other methods here, as TEASER++ currently
has the best performance (to the best of our knowledge)
on the 3DMatch dataset, see [28] for comparison with
optimization-based methods, and also read from [9] the suc-
cess rates (recall) of other deep learning methods.

Results. Following [28], we set c = 0.05. We presented
results in Table 2 and Figure 8. In Table 2 we observed that
ARCS++OR and TEASER++ have very close performance,
although ARCS++OR has slight advantage (e.g., in 12 cases
in bold ARCS++OR has higher success rates). In terms of
running times, ARCS++OR is slower than TEASER++. One
reason is that we used an industrial-strength implementa-
tion3 of TEASER++, while ARCS++OR was implemented in
plain Matlab. This suggests our current idea of extending
ARCS+OR into the translation case might be sub-optimal,
and will motivate us to design even faster algorithms for
that purpose, which though will require serious innovations.
Finally, in Figure 8, we reported the success rates averaged
over all testing scenes of 3DMatch and with the threshold
(rotation degree) varying from 0 to 100. This delivers the
same message that our direct extension of ARCS+OR main-
tains a state-of-the-art performance for solving Problem 2.
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