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1. Implementation details

Our proposed models were designed using PyTorch [1]
deep learning package. As shown in Figure 1 (a), the neural
ODE uses a fully connected network (FCN) consisting of
two fully connected layers and a Tanh activation function.
The k-space location (i.e., [kx, ky] in 2D acquisition) of
the sampling points were concatenated together for all shots
and used as the input of the FCN. The output size kept the
same as the input. As shown in Figure 1 (b), like many med-
ical image reconstruction studies, a U-Net [3] was used as
the end-to-end reconstruction network to remove the resid-
ual artifacts and noises in the intermediate images, obtained
using nuFFT and adjoint nuFFT operations on the opti-
mized k-space trajectories. The U-Net structure comprises
an encoder network with four layers of the down-sampling
channel and a decoder network with a mirrored and reversed
encoder structure. Multiple skip connections are used to
concatenate entire feature maps from encoder to decoder to
enhance mapping performance. In addition, because of the
GPU memory limit, the multi-channel images were com-
bined into one image using a root-sum-of-squares recon-
struction (RSS) [2] and then used as the input of the U-Net
network.

2. More Results

We provide qualitative comparisons with PILOT [6] un-
der the same protocol. Here, we only use 1000 sampling
points for each spoke. As shown in Table 1, our method
can be much better especially when acceleration is high. As
PILOT optimizes the acquisition by directly introducing a
learnable matrix, which is surely sensitive to initialization
and would easily stuck in suboptimal points.

As well, the learned k-space trajectories using Cartesian,
and spiral trajectory as the initial sampling pattern were
demonstrated in Figures 2, and 3, respectively. The Carte-
sian imaging uses straight-line sampling pattern to acquire
k-space. In Figure 2, the learned trajectory uses a Cartesian
trajectory as an initial sampling pattern. A wavy sampling
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Table 1. Comparisons on brain AXT1 images, using radial.

Acc. Level PILOT Ours
PSNR SSIM PSNR SSIM

16-shots 28.62± 0.66 0.77± 0.01 31.03± 0.59 0.82± 0.01
32-shots 31.24± 0.61 0.83± 0.01 33.06± 1.23 0.86± 0.01

pattern was formed at the canter region of each phase en-
coding line, becoming more efficient in acquiring the high-
density k-space region than a straight line. Spiral imaging
uses a curved sampling pattern to acquire k-space. In Fig-
ure 3, the spiral trajectory was further optimized to cover the
k-space more efficiently. The initial uniform density spiral
spoke adaptively concentrated into the central k-space re-
gion with a slightly wavy pattern, which assembles the vari-
able density spiral sampling, which was previously shown
to be more efficient in spiral imaging [5].

The influence of the physical constraints on the opti-
mized trajectories is also demonstrated in the middle of
Figures 2, and 3. While the unconstrained trajectories at-
tempted to rapidly explore large sampling space for cov-
ering more k-space information, the resulted trajectories
tend to traverse with abrupt turns, leading to irregular non-
smooth sampling patterns which are difficult to be imple-
mented in MRI scanners. However, the learned trajectories
under physical constraints can produce a hardware-friendly
waveform for practical implementation.

The point-spread function (PSF) is also demonstrated for
each corresponding trajectory in Figures 2, and 3. Com-
pared with the fixed PSF, the learned trajectory can lead to
a PSF with reduced side lobes and more homogeneous sam-
pling of the neighboring pixels. This can result in reduced
structural and aliasing imaging artifacts in the undersam-
pled images.

The reconstructed images from the learned trajectories
using Cartesian, and spiral trajectories were demonstrated
in Figures 4, and 5, respectively. These images were com-
pared with the images directly reconstructed using fixed tra-
jectory. The framework was slightly modified by removing
the trajectory optimization network and only training the
end-to-end reconstruction U-Net using the standard super-
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(a) Neural ODE (b) Reconstruction CNN

Figure 1. Schematic illustration of the proposed framework. (a) Detailed architecture of the neural ODE using a fully connected network. (b) A
reconstruction CNN using a U-Net architecture.

vised learning approach. The qualitative evaluation of knee
and brain images proves the improved image reconstruc-
tion using our proposed method. As illustrated in Figures 4,
and 5, the reconstructed images from learned trajectories
are consistently better than those from the fixed trajectories
for each type. More specifically, Figure 4 provides an exam-
ple of a reconstructed knee image using a learned Cartesian
trajectory at an acceleration factor (AF) of 4.4. This fig-
ure shows that the learned trajectory provides better image
features, improved image sharpness, and more detail recov-
ery due to their optimized k-space coverage. The learned
Cartesian trajectory outperformed the regular Cartesian tra-
jectory at the same acceleration rate. Likewise, the learned
spiral trajectories provided improved reconstruction perfor-
mance compared to their fixed counterparts in Figure 5 for
the brain images at the AXT1 sequence. Notably, the inter-
mediate images directly obtained from the RSS reconstruc-
tion were shown at the top row of Figures 4, and 5 for the
learned and fixed trajectories. It is evident that the learned
trajectory can better remove structural and aliasing artifacts
and provided more realistic image features and accurate im-
age contrast than that of the fixed trajectory at the same level
of acceleration, indicating the efficacy of the learning-based
trajectory optimization.

We also explored the generalization ability of the pro-
posed method to high acceleration level. Here, we under-
sampled the k-space data using only four spiral interleaves.
As illustrated in Figure 6, the learned trajectory provides
much sharper images and more image details than the fixed
trajectory, of which the provided MR images are far away
from satisfaction as the artifacts are very everywhere.

The context-awareness of the trajectory optimization is
also investigated by comparing the optimized trajectories
for datasets with different anatomies. Figure ?? illustrates
the learned trajectories for brain and knee datasets, respec-
tively, using an initialization of the same Cartesian trajec-
tory. There are differences between the exemplified k-space
for the brain and knee due to the difference of the imaged
objects. The learned trajectories can realize this feature

Figure 2. Trajectory comparison between fixed and learned Cartesian
trajectory with acceleration factor AF = 6 (16 phase encoding lines) op-
timized on the knee datasets. Top: initial Cartesian trajectory. Middle:
learned Cartesian trajectory without physical constraints. Bottom: learned
Cartesian trajectory with physical constraints. The corresponding PSF is
shown for each trajectory.

and correctly characterize the difference of the k-space den-
sity distribution. More specifically, the learned trajectory
has more fluctuation and coverage for the scattered knee k-
space than the more centralized brain k-space.

3. Segmentation on undersampled MRI

To further assess the clinical value of the proposed
method, we apply it to the tumor segmentation task on un-
dersampled MRI from the BraTS2020 [4] datatset. Here,
the MRI is accelerated for 8-fold using radial trajectory. As
illustrated in Fig. 7, the segmentation model will collapse



Figure 3. Trajectory comparison between fixed and learned spiral trajec-
tory with 4 interleaves, optimized on the brain AXT1 datasets. Top: initial
spiral trajectory. Middle: learned spiral trajectory without physical con-
straints. Bottom: learned spiral trajectory with physical constraints. The
corresponding PSF is shown for each trajectory.

when directly training from the undersampled MRI (No-
Recon). Using the proposed method, we can get a simi-
lar performance when compared to the model based on the
fully sampled data. Our method is much more efficient as
we accelerate it for eight times.
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Figure 4. MRI reconstruction comparison between fixed and learned Cartesian trajectory at acceleration rate AF = 4.4 (32 phase encoding lines) for knee
images. Left column: ground truth fully sampled image. Middle column: upper is the input image getting from RSS with fixed trajectory. Bottom is the
reconstructed image from U-Net. Right column: upper is the input image getting from RSS with learned trajectory. Bottom is the reconstructed image
from U-Net. The learned trajectory provides more realistic image feature recovery and sharper image quality than the fixed trajectory, as indicated by the
red arrows.



Figure 5. MRI reconstruction comparison between fixed and learned spiral trajectory with 16 interleaves for brain AXT1 images. Left column: ground
truth fully sampled image. Middle column: upper is the input image getting from RSS with fixed trajectory. Bottom is the reconstructed image from U-Net.
Right column: upper is the input image getting from RSS with learned trajectory. Bottom is the reconstructed image from U-Net. The learned trajectory
provides sharper images and more image details than the fixed trajectory indicated by the red arrows.



Figure 6. MRI reconstruction comparison between fixed and learned spiral trajectory with 4 interleaves for brain AXT1 images. Left column: ground
truth fully sampled image. Middle column: upper is the input image getting from RSS with fixed trajectory. Bottom is the reconstructed image from U-Net.
Right column: upper is the input image getting from RSS with learned trajectory. Bottom is the reconstructed image from U-Net. The learned trajectory
provides sharper images and more image details than the fixed trajectory.

Figure 7. Tumor segmentation on BraTS2020 [4] dataset. The MRI is accelerated by 8-fold. Our method can provide a comparable
segmentation result when compared to method using fully sampled MRI.


	. Implementation details
	. More Results
	. Segmentation on undersampled MRI

