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Abstract

This material includes full derivations that cannot be fitted to the main paper due to the limited space. In specific, we first
clarify the formulation of L' in the main paper, and then derive the upper bounds of L5¢'f and L5"P, at last, illustrate how
the visual centers wy, approach visual features vy, .

1. The formulation of £°°'/ in the main paper

Reviewing the literature in self-supervised learning, we observe that most works [2, 5, 7] formulate the original self-
supervised contrastive loss as follows:
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Given N and the augmented samples (i.e., overall 2N samples), there are 1 positive pair in the numerator, the other 1 positive
and 2(N — 1) negatives in the denominator. Even there is one positive pair included in the denominator of L, the methods
[3, 11] consider that only the 2(N — 1) negatives contribute to the uniformity property, and propose that the positive pair in
the numerator relates with the alignment property. Thus, when discussing the two properties, we formulate £°¢!/ as Eq. 1
of the main paper, which removes the positive pair in the denominator. Furthermore, [12] justifies that optimizing the £/
even with a small batch size is comparable with L that requires a large batch size for allocating enough negatives. Thus,
we set the latest £5°f as our objectives in Section 3.2 of the main paper.

When diving into the supervised contrastive loss L°"“P, we observe existing works, MUFI [8] and ER [1], neglect the
similarities and differences between £°“P and £°!f. To clarify the superiority of £5"7, we derive the upper bounds of the
two losses, and summarize the advantages of £5“? in Section 3.2 of the main paper. To sum up, we justified that £5“P is more
feasible for zero-shot video classification.

J- ()

Eori = IOg[

2. Upper bounds of £°¢/ and £5*?

In Section 3.2 of the main paper, we present the upper bounds of £%¢f and £*“P. In this section, we perform the full
derivations which are based on the upper bounds of LSE and SP, in Eq. 2 in the main paper:
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where 7 is the number of z in X. We derive the upper bound of £5¢! as follow:
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where K is the number of y in Y, SiMmax = max, ey\y, Sim(vy, , 5y, ). The upper bound of £5"? is derived as:
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3. Visual centers W/
In Section 3.3 of the main paper, we use Eq. 5 in the main paper to learn the visual centers W = [wy,, ..., wy, ] which

is the parameter matrix of a linear classifier without biases. The parameter vector w,, from the linear classifier can be
interpreted as the class representation of the class y [4,6]. In this section, we justify how the visual centers approach visual

features on a unit hypersphere during back-propagation. For convenience, we reprint Eq. 5 as follow:
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Eq. h shows that kH approaches the visual feature “ | (i.e., cos(vy,, Wy, ) > cos(vy,,wy,)) and stays away from

Tw,
ﬁ, i # k (e, cos(vy,, Wy, ) < cos(v% wyk)) during the back-propagation. After a number of training iterations, we

can treat ﬁ as the visual center of all ” ” even if it may not be exactly the mean of all ” ” due to the effect of hard
posmve/negatlve samples to P; [9,10].
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