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Abstract

This material includes full derivations that cannot be fitted to the main paper due to the limited space. In specific, we first
clarify the formulation of Lself in the main paper, and then derive the upper bounds of Lself and Lsup, at last, illustrate how
the visual centers wyk

approach visual features vyk
.

1. The formulation of Lself in the main paper
Reviewing the literature in self-supervised learning, we observe that most works [2, 5, 7] formulate the original self-

supervised contrastive loss as follows:

Lori=−log[
exp [λsim(fi, fj)]∑2N

k=1 1k ̸=i exp [λsim(fi, fk)]
]. (a)

Given N and the augmented samples (i.e., overall 2N samples), there are 1 positive pair in the numerator, the other 1 positive
and 2(N − 1) negatives in the denominator. Even there is one positive pair included in the denominator of Lori, the methods
[3, 11] consider that only the 2(N − 1) negatives contribute to the uniformity property, and propose that the positive pair in
the numerator relates with the alignment property. Thus, when discussing the two properties, we formulate Lself as Eq. 1
of the main paper, which removes the positive pair in the denominator. Furthermore, [12] justifies that optimizing the Lself

even with a small batch size is comparable with Lori that requires a large batch size for allocating enough negatives. Thus,
we set the latest Lself as our objectives in Section 3.2 of the main paper.

When diving into the supervised contrastive loss Lsup, we observe existing works, MUFI [8] and ER [1], neglect the
similarities and differences between Lsup and Lself . To clarify the superiority of Lsup, we derive the upper bounds of the
two losses, and summarize the advantages of Lsup in Section 3.2 of the main paper. To sum up, we justified that Lsup is more
feasible for zero-shot video classification.

2. Upper bounds of Lself and Lsup

In Section 3.2 of the main paper, we present the upper bounds of Lself and Lsup. In this section, we perform the full
derivations which are based on the upper bounds of LSE and SPλ in Eq. 2 in the main paper:

LSE(x)=log(
∑
x∈X

exp(x)), (b)

≤ log(n exp (max
x∈X

(x))),

=max
x∈X

(x) + log (n),
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SPλ(x)=
1

λ
log(1+exp(λx)), (c)

=
1

λ
LSE(λyy∈{x,0}),

≤ max[x, 0] +
log(2)

λ
,

where n is the number of x in X . We derive the upper bound of Lself as follow:

Lself =−log[
exp [λsim(vyi , syi)]∑

yj∈Y\yi
exp [λsim(vyi

, syj
)]
], (d)

=λ(−sim(vyi
, syi

)+
1

λ
LSE(λsim(vyi

, syj
)yj∈Y\yi

)),

≤λ(simmax−sim(vyi
, syi

) +
log(K−1)

λ
),

where K is the number of y in Y , simmax = maxyj∈Y\yi
sim(vyi

, syj
). The upper bound of Lsup is derived as:

Lsup=−log[
exp [λsim(vyi , syi)]∑

yj∈Y exp [λsim(vyi
, syj

)]
], (e)

=λSPλ[−sim(vyi
, syi

)+
1

λ
LSE(λsim(vyi

, syj
)yj∈Y\yi

)],

≤λSPλ[simmax−sim(vyi
, syi

) +
log(K−1)

λ
],

≤λmax[simmax−sim(vyi , syi)+
log(K−1)

λ
, 0]+log(2).

3. Visual centers W
In Section 3.3 of the main paper, we use Eq. 5 in the main paper to learn the visual centers W = [wy1 , . . . , wyK

] which
is the parameter matrix of a linear classifier without biases. The parameter vector wyk

from the linear classifier can be
interpreted as the class representation of the class yk [4, 6]. In this section, we justify how the visual centers approach visual
features on a unit hypersphere during back-propagation. For convenience, we reprint Eq. 5 as follow:

LC = − log
exp[λ cos(vyi

, wyi
)]∑

yj∈Y exp[λ cos(vyi
, wyj

)]
, (f)

= − log
exp[λ

vyi
∥vyi∥

× wyi

∥wyi
∥ ]∑

yj∈Y exp[λ
vyi

∥vyi∥
× wyj

∥wyj
∥ ]
.

Then we derive the gradient of LC with respect to wyk

∥wyk
∥ as follow:

∂LC

∂
wyk

∥wyk
∥
=


λ(Pik − 1)

vyi

∥vyi
∥
, i = k

λPik
vyi

∥vyi
∥
, i ̸= k

, (g)

where, Pik =
exp[λ cos(vyi ,wyk

)]∑
yj∈Y exp[λ cos(vyi ,wyj

)] ∈ [0, 1]. During the back-propagation, LC encourages that changing wyk

∥wyk
∥ to

w̄yk

∥w̄yk
∥ =

wyk

∥wyk
∥ − l · ∂LC

∂
wyk

∥wyk
∥

where l is the learning rate. We compute cos(vyi
, w̄yk

) as follow:

cos(vyi
, w̄yk

) =

{
cos(vyi , wyk

) + l · λ(1− Pik), i = k

cos(vyi , wyk
)− l · λPik, i ̸= k

, (h)



Eq. h shows that wyk

∥wyk
∥ approaches the visual feature vyk

∥vyk
∥ (i.e., cos(vyk

, w̄yk
) ≥ cos(vyk

, wyk
)) and stays away from

vyi
∥vyi∥

, i ̸= k (i.e., cos(vyi , w̄yk
) ≤ cos(vyi , wyk

)) during the back-propagation. After a number of training iterations, we

can treat wyk

∥wyk
∥ as the visual center of all vyk

∥vyk∥
even if it may not be exactly the mean of all vyk

∥vyk∥
due to the effect of hard

positive/negative samples to Pik [9, 10].
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