

Supplementary Material for *Alignment-Uniformity aware Representation Learning for Zero-shot Video Classification*

Shi Pu^{1*} Kaili Zhao^{2*} Mao Zheng¹

¹Tencent AI Platform Department ²Beijing University of Posts and Telecom.
 {shipu, moonzheng}@tencent.com kailizhao@bupt.edu.cn

Abstract

This material includes full derivations that cannot be fitted to the main paper due to the limited space. In specific, we first clarify the formulation of \mathcal{L}^{self} in the main paper, and then derive the upper bounds of \mathcal{L}^{self} and \mathcal{L}^{sup} , at last, illustrate how the visual centers w_{y_k} approach visual features v_{y_k} .

1. The formulation of \mathcal{L}^{self} in the main paper

Reviewing the literature in self-supervised learning, we observe that most works [2, 5, 7] formulate the original self-supervised contrastive loss as follows:

$$\mathcal{L}_{\text{ori}} = -\log \left[\frac{\exp [\lambda \text{sim}(f_i, f_j)]}{\sum_{k=1}^{2N} \mathbb{1}_{k \neq i} \exp [\lambda \text{sim}(f_i, f_k)]} \right]. \quad (\text{a})$$

Given N and the augmented samples (*i.e.*, overall $2N$ samples), there are 1 positive pair in the numerator, the other 1 positive and $2(N - 1)$ negatives in the denominator. Even there is one positive pair included in the denominator of \mathcal{L}_{ori} , the methods [3, 11] consider that only the $2(N - 1)$ negatives contribute to the uniformity property, and propose that the positive pair in the numerator relates with the alignment property. Thus, when discussing the two properties, we formulate \mathcal{L}^{self} as Eq. 1 of the main paper, which removes the positive pair in the denominator. Furthermore, [12] justifies that optimizing the \mathcal{L}^{self} even with a small batch size is comparable with \mathcal{L}_{ori} that requires a large batch size for allocating enough negatives. Thus, we set the latest \mathcal{L}^{self} as our objectives in Section 3.2 of the main paper.

When diving into the supervised contrastive loss \mathcal{L}^{sup} , we observe existing works, MUFU [8] and ER [1], neglect the similarities and differences between \mathcal{L}^{sup} and \mathcal{L}^{self} . To clarify the superiority of \mathcal{L}^{sup} , we derive the upper bounds of the two losses, and summarize the advantages of \mathcal{L}^{sup} in Section 3.2 of the main paper. To sum up, we justified that \mathcal{L}^{sup} is more feasible for zero-shot video classification.

2. Upper bounds of \mathcal{L}^{self} and \mathcal{L}^{sup}

In Section 3.2 of the main paper, we present the upper bounds of \mathcal{L}^{self} and \mathcal{L}^{sup} . In this section, we perform the full derivations which are based on the upper bounds of LSE and SP_λ in Eq. 2 in the main paper:

$$\begin{aligned} \text{LSE}(x) &= \log \left(\sum_{x \in \mathcal{X}} \exp(x) \right), \\ &\leq \log(n \exp(\max_{x \in \mathcal{X}}(x))), \\ &= \max_{x \in \mathcal{X}}(x) + \log(n), \end{aligned} \quad (\text{b})$$

*These authors contributed equally.

$$\begin{aligned}
\text{SP}_\lambda(x) &= \frac{1}{\lambda} \log(1 + \exp(\lambda x)), \\
&= \frac{1}{\lambda} \text{LSE}(\lambda y_{y \in \{x, 0\}}), \\
&\leq \max[x, 0] + \frac{\log(2)}{\lambda},
\end{aligned} \tag{c}$$

where n is the number of x in \mathcal{X} . We derive the upper bound of \mathcal{L}^{self} as follow:

$$\begin{aligned}
\mathcal{L}^{self} &= -\log \left[\frac{\exp[\lambda \text{sim}(v_{y_i}, s_{y_i})]}{\sum_{y_j \in \mathcal{Y} \setminus y_i} \exp[\lambda \text{sim}(v_{y_i}, s_{y_j})]} \right], \\
&= \lambda(-\text{sim}(v_{y_i}, s_{y_i}) + \frac{1}{\lambda} \text{LSE}(\lambda \text{sim}(v_{y_i}, s_{y_j})_{y_j \in \mathcal{Y} \setminus y_i})), \\
&\leq \lambda(\text{sim}_{\max} - \text{sim}(v_{y_i}, s_{y_i}) + \frac{\log(K-1)}{\lambda}),
\end{aligned} \tag{d}$$

where K is the number of y in \mathcal{Y} , $\text{sim}_{\max} = \max_{y_j \in \mathcal{Y} \setminus y_i} \text{sim}(v_{y_i}, s_{y_j})$. The upper bound of \mathcal{L}^{sup} is derived as:

$$\begin{aligned}
\mathcal{L}^{sup} &= -\log \left[\frac{\exp[\lambda \text{sim}(v_{y_i}, s_{y_i})]}{\sum_{y_j \in \mathcal{Y}} \exp[\lambda \text{sim}(v_{y_i}, s_{y_j})]} \right], \\
&= \lambda \text{SP}_\lambda[-\text{sim}(v_{y_i}, s_{y_i}) + \frac{1}{\lambda} \text{LSE}(\lambda \text{sim}(v_{y_i}, s_{y_j})_{y_j \in \mathcal{Y} \setminus y_i})], \\
&\leq \lambda \text{SP}_\lambda[\text{sim}_{\max} - \text{sim}(v_{y_i}, s_{y_i}) + \frac{\log(K-1)}{\lambda}], \\
&\leq \lambda \max[\text{sim}_{\max} - \text{sim}(v_{y_i}, s_{y_i}) + \frac{\log(K-1)}{\lambda}, 0] + \log(2).
\end{aligned} \tag{e}$$

3. Visual centers W

In Section 3.3 of the main paper, we use Eq. 5 in the main paper to learn the visual centers $W = [w_{y_1}, \dots, w_{y_K}]$ which is the parameter matrix of a linear classifier without biases. The parameter vector w_{y_k} from the linear classifier can be interpreted as the class representation of the class y_k [4, 6]. In this section, we justify how the visual centers approach visual features on a unit hypersphere during back-propagation. For convenience, we reprint Eq. 5 as follow:

$$\begin{aligned}
\mathcal{L}_C &= -\log \frac{\exp[\lambda \cos(v_{y_i}, w_{y_i})]}{\sum_{y_j \in \mathcal{Y}} \exp[\lambda \cos(v_{y_i}, w_{y_j})]}, \\
&= -\log \frac{\exp[\lambda \frac{v_{y_i}}{\|v_{y_i}\|} \times \frac{w_{y_i}}{\|w_{y_i}\|}]}{\sum_{y_j \in \mathcal{Y}} \exp[\lambda \frac{v_{y_i}}{\|v_{y_i}\|} \times \frac{w_{y_j}}{\|w_{y_j}\|}]}.
\end{aligned} \tag{f}$$

Then we derive the gradient of \mathcal{L}_C with respect to $\frac{w_{y_k}}{\|w_{y_k}\|}$ as follow:

$$\frac{\partial \mathcal{L}_C}{\partial \frac{w_{y_k}}{\|w_{y_k}\|}} = \begin{cases} \lambda(P_{ik} - 1) \frac{v_{y_i}}{\|v_{y_i}\|}, & i = k \\ \lambda P_{ik} \frac{v_{y_i}}{\|v_{y_i}\|}, & i \neq k \end{cases}, \tag{g}$$

where, $P_{ik} = \frac{\exp[\lambda \cos(v_{y_i}, w_{y_k})]}{\sum_{y_j \in \mathcal{Y}} \exp[\lambda \cos(v_{y_i}, w_{y_j})]} \in [0, 1]$. During the back-propagation, \mathcal{L}_C encourages that changing $\frac{w_{y_k}}{\|w_{y_k}\|}$ to $\frac{\bar{w}_{y_k}}{\|\bar{w}_{y_k}\|} = \frac{w_{y_k}}{\|w_{y_k}\|} - l \cdot \frac{\partial \mathcal{L}_C}{\partial \frac{w_{y_k}}{\|w_{y_k}\|}}$ where l is the learning rate. We compute $\cos(v_{y_i}, \bar{w}_{y_k})$ as follow:

$$\cos(v_{y_i}, \bar{w}_{y_k}) = \begin{cases} \cos(v_{y_i}, w_{y_k}) + l \cdot \lambda(1 - P_{ik}), & i = k \\ \cos(v_{y_i}, w_{y_k}) - l \cdot \lambda P_{ik}, & i \neq k \end{cases}, \tag{h}$$

Eq. [h](#) shows that $\frac{w_{y_k}}{\|w_{y_k}\|}$ approaches the visual feature $\frac{v_{y_k}}{\|v_{y_k}\|}$ (i.e., $\cos(v_{y_k}, \bar{w}_{y_k}) \geq \cos(v_{y_k}, w_{y_k})$) and stays away from $\frac{v_{y_i}}{\|v_{y_i}\|}, i \neq k$ (i.e., $\cos(v_{y_i}, \bar{w}_{y_k}) \leq \cos(v_{y_i}, w_{y_k})$) during the back-propagation. After a number of training iterations, we can treat $\frac{w_{y_k}}{\|w_{y_k}\|}$ as the visual center of all $\frac{v_{y_k}}{\|v_{y_k}\|}$ even if it may not be exactly the mean of all $\frac{v_{y_k}}{\|v_{y_k}\|}$ due to the effect of hard positive/negative samples to P_{ik} [\[9, 10\]](#).

References

- [1] Shizhe Chen and Dong Huang. Elaborative rehearsal for zero-shot action recognition. In *ICCV*, 2021. [1](#)
- [2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *ICML*, 2020. [1](#)
- [3] Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. *arXiv preprint arXiv:2011.02803*, 2020. [1](#)
- [4] Cunxiao Du, Zhaozheng Chen, Fuli Feng, Lei Zhu, Tian Gan, and Liqiang Nie. Explicit interaction model towards text classification. In *AAAI*, 2019. [2](#)
- [5] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *CVPR*, 2020. [1](#)
- [6] Ofir Press and Lior Wolf. Using the output embedding to improve language models. *arXiv:1608.05859*, 2016. [2](#)
- [7] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge Belongie, and Yin Cui. Spatiotemporal contrastive video representation learning. In *CVPR*, 2021. [1](#)
- [8] Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xiao-Ping Zhang, Dong Wu, and Tao Mei. Boosting video representation learning with multi-faceted integration. In *CVPR*, 2021. [1](#)
- [9] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive margin softmax for face verification. *IEEE Signal Processing Letters*, pages 926–930, 2018. [3](#)
- [10] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere embedding for face verification. In *Proceedings of the 25th ACM international conference on Multimedia*, 2017. [3](#)
- [11] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In *ICML*, 2020. [1](#)
- [12] Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and Yann LeCun. Decoupled contrastive learning. *arXiv:2110.06848*, 2021. [1](#)