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This document provides additional information about
our experimental settings and supporting qualitative visu-
alizations. Below is a summary of the sections in the sup-
plementary file:

• (§S1) Limitations

• (§S2) Additional experimental details

• (§S3) Non-interactive baseline implementation details

• (§S4) Masking strategy for semantic maps

• (§S5) Action costs for long-term goal sampling

• (§S6) Influence of object PF over time

• (§S7) Examples of semantic maps

• (§S8) Examples of potential functions

• (§S9) Visualizing ObjectNav episodes

Additionally, we provide a supplementary video that visu-
alizes complete ObjectNav trajectories and provides an in-
tuition of how PONI works. These are animated versions of
the ObjectNav episodes visualized in Fig. 5 from the main
paper, and Fig. S6 in the supplementary.

S1. Limitations
In Sec. 5 from the main paper, we discussed the benefits

of our proposed PONI method both in terms of achieving
state-of-the-art results on ObjectNav, as well as computa-
tional benefits during training. However, we would like to
acknowledge some limitations of our approach.

One of our main limitations is our reliance on the se-
mantic map as the only source for deciding when an object
is found (i.e., to execute STOP). As discussed in the abla-
tion study from Sec. 5, our performance is sensitive to the
image segmentation quality. The success rate goes down
by 14.9% in Gibson and 45.4% on MP3D relative to the

Gibson (val) MP3D (val)

Method Succ. SPL SPL / Succ. Succ. SPL SPL / Succ.

PONI + GT-s 86.5 51.5 0.596 58.2 27.5 0.47
PONI 73.6 41.0 0.557 31.8 12.1 0.38

Relative drop -14.9% -20.4% -6.5% -45.4% -56.0% -19.1%

Table S1. Impact of segmentation errors on PONI’s ObjectNav
performance. The first row shows performance with ground-truth
segmentation. The last row shows the relative drop in the perfor-
mance when we remove ground-truth segmentation.

performance with ground-truth segmentation (see Tab. S1).
Note that our ratio of SPL to success remains relatively
stable (only 6% reduction on Gibson and 19% on MP3D),
indicating that our search efficiency is not affected signifi-
cantly by segmentation errors. Unlike end-to-end RL meth-
ods which may learn to be robust to the sensory noise, we
do not have an inbuilt mechanism to handle failures in seg-
mentation. This limitation of interaction-free learning can
potentially be addressed by using the latest advances in seg-
mentation. Additionally, segmentation errors in simulation
can be caused by reconstruction artifacts in the 3D scenes.
Experimenting on higher quality scenes, or testing in the
real world may address this limitation.

We also rely on access to human-annotated semantic in-
formation in 3D scenes. While this is standard practice
for most approaches in ObjectNav [6, 8, 11, 12], alterna-
tive strategies exist for learning ObjectNav without access
to any ground-truth semantic annotations in 3D scenes [5].
Such self-supervised approaches have the potential to be
more scalable than our supervised approach. However,
to the best of our knowledge, there are no purely self-
supervised methods that achieve state-of-the-art results for
ObjectNav.

S2. Additional experimental details

We provide additional information about the experi-
ments to supplement the main paper. The Gibson Ob-
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jectNav dataset from [6] consists of 6 object categories:
‘chair’, ‘couch’, ‘potted plant’, ‘bed’, ‘toilet’, and ‘tv’.
The train split episodes are generated on-the-fly during
training from 25 train scenes in Gibson tiny. The val
split consists of 1,000 episodes from 5 val scenes in Gib-
son tiny. The MP3D ObjectNav dataset from the Habi-
tat challenge consists of 21 object categories: ‘chair’, ‘ta-
ble’, ‘picture’, ‘cabinet’, ‘cushion’, ‘sofa’, ‘bed’, ‘chest of
drawers’, ‘plant’, ‘sink’, ‘toilet’, ‘stool’, ‘towel’, ‘tv moni-
tor’, ‘shower’, ‘bathtub’, ‘counter’, ‘fireplace’, ‘gym equip-
ment’, ‘seating’, and ‘clothes’. The train / val splits consist
of 263,2422 / 2,195 episodes from 61 / 11 MP3D scenes.
We share these datasets publicly on our project website:
https://vision.cs.utexas.edu/projects/poni/.

S3. Non-interactive baseline details

We provide more details about the non-interactive base-
lines from Sec.4.1 in the main paper.

BC: We train a recurrent policy using behavior cloning.
The policy consists of a ResNet-50 backbone for encoding
RGB-D observations, and MLP layers to encode the agent’s
pose and goal object category. The outputs of these mod-
els are concatenated and fed to a 2-layer LSTM with 512-
D hidden states to aggregate observations over time. The
LSTM hidden states are used by a linear layer to predict a
probability distribution over the set of agent actions. This
is a standard policy architecture for recent navigation meth-
ods [8, 10]. The idea in behavior cloning is to supervise the
policy to classify the ground-truth action sampled by an ex-
pert at each step. We use the greedy shortest-path sampler
from Habitat [9] to sample expert actions to the goal object.
The model is trained using the cross-entropy loss.

Predict-θ: We modify the potential function network
from Sec. 3.3 in the main paper to predict the direction to
the nearest object from each category. We discretize the di-
rections from 0◦ to 360◦ into 8 classes. The model uses the
partial semantic map as input and predicts a N × 8 array
of direction probabilities for the N object categories. The
model is trained on the semantic maps dataset from Sec. 3.6
in the main paper with the cross-entropy loss per object cat-
egory. During ObjectNav, we sample the most-likely direc-
tion to the goal object category, and navigate to the closest
frontier along this direction.

Predict-xy: We modify the potential function network
from Sec. 3.3 to predict the (x, y) map location of the near-
est object from each category. The model uses the partial
semantic map as input and regresses the normalized posi-
tion values from 0 to 1 (same action space as [6]). The
model is trained on the semantic maps dataset from Sec. 3.6
in the main paper with the mean-squared error loss per ob-
ject category. During ObjectNav, we sample the predicted

MP3D (val)

Method Succ. ↑ SPL ↑ DTS ↓
PONI (square) 31.8 12.1 5.1
PONI (view-cone) 31.9 12.1 5.1

Table S2. We measure the impact of masking strategy for generat-
ing training samples during PF training. In ‘square’, we unmask a
3m × 3m square region centered around each shortest-path loca-
tion on the semantic map. In ‘view-cone’, we unmask a viewing
cone in-front of the agent with 3m radius and 90◦ field-of-view.
Both strategies perform comparably on the MP3D (val) split.

(x, y) location as the long-term navigation goal.

Predict-A: We modify the potential function network
from Sec. 3.3 to predict the low-level navigation action for
reaching the nearest object from each category. The model
uses the partial semantic map as input and classifies, per
object category, the action for reaching the nearest object
along the shortest-path. The model is trained on the se-
mantic maps dataset from Sec. 3.6 in the main paper with
the cross-entropy loss per object category. During Object-
Nav, we sample the most-likely prediction action to reach
the goal object.

S4. Masking strategy for semantic maps
We described our strategy to sample exploration masks

in Sec. 3.6 in the main paper, where we sampled random
shortest paths and revealed a 3m× 3m square patch around
each location on the shortest-path. We now experiment with
an alternative strategy where we reveal a viewing cone in-
front of the agent, where we aim to mimic the agent’s vis-
ibility in 3D space. The results are shown in Tab. S2. We
find that it performs comparably with the ‘square’ strategy,
which we use as the default option for all of our experi-
ments.

S5. Action costs for long-term goal sampling
As described in Sec. 3.3 in the main paper, we sample

long-term goals by selecting the maxima of the overall po-
tential (see Eqn. 2). An alternative is to take into account the
cost of navigating from the agent’s location to each map lo-
cation as well (i.e., an action cost). For example, when there
are two locations with similarly valued potentials, the agent
could choose to navigate to the nearer one. We incorporate
this into PONI by adding a distance potential function Ud

that is 1.0 at the agent’s location and linearly decreases as
we move away:

Ut = αUa
t + βUo

t + γUd
t , where α+ β + γ = 1. (1)

The constants α, β, γ are determined through a grid-
search over MP3D (val). We compare the best results from

https://vision.cs.utexas.edu/projects/poni/


MP3D (val)

Method Succ. ↑ SPL ↑ DTS ↓
PONI 31.8 12.1 5.1
PONI + act-cost 30.3 11.6 5.3

Table S3. We measure the impact of using action costs to sample
long-term goals for PONI.

Gibson MP3D

Figure S1. Influence of object PF on action selection: The plots
show the percentage of of episodes where the selected goal loca-
tion was influenced by the object PF (y-axis) at a given time-step
of an episode (x-axis). The contribution of the object PF is higher
during later stages of the episode.

this grid-search (+ act-cost) with our current method in
Tab. S3. PONI does not benefit from adding the action
costs. Based on our qualitative analysis, we find that the
PONI agent typically continues to explore a single frontier
sufficiently before moving away to other frontiers. There-
fore, prioritizing the best frontier at all times (regardless of
how far away it is) works well in practice.

S6. Influence of object PF over time

In Fig. 5 from main and Fig. S6, we qualitatively demon-
strated that the agent explores using the area PF in early
stages of the episode, and then uses the object PF to find
objects. We now quantitatively demonstrate this. In Fig. S1,
we plot the influence of the object PF on the goal location
selection at a given time t on Gibson (val) and MP3D (val),
i.e, the percentage of episodes where the selected goal loca-
tion differs from the maxima of the area PF at t (by atleast
1m euclidean distance). The contribution of the object PF
is higher in the later stages of the episode, after sufficient
information has been gathered. This is intuitive: we cannot
anticipate unseen objects without sufficient context on the
map.

S7. Examples of semantic maps
We show examples from the semantic map datasets we

used for training the potential function network in Figs. S2
and S3. The Gibson semantic maps contain up to 15 object
categories of which 6 categories are goal categories (same
as [6]). The MP3D semantic maps contain up to 21 ob-
ject categories of which all are goal categories (same as the
Habitat challenge [2]). These maps are computed by per-
forming an orthographic projection of the 3D point-cloud
annotations (following [3]). In addition to the pipeline
from [3], we perform additional pre-processing to obtain
per-floor maps. Specifically, we segment the 3D seman-
tic point-cloud from Gibson [1] and MP3D [4] annotations
into different floors. We do this by loading each scene into
Habitat [9], identifying the navigable points and cluster-
ing them along the Y-coordinate to automatically discover
the number of floors and their extents using DBScan [7].
We then perform orthographic projection independently for
each floor of the scene.

S8. Examples of potential functions
In Fig. 3 from the main paper, we showed an example

of potential functions from MP3D. We now show more ex-
amples of such potential functions for Gibson and MP3D
in Figs. S4 and S5.

S9. Visualizing ObjectNav episodes
In Figure 5 from the main paper, we qualitatively visu-

alized an episode showing how the potential functions are
used to perform ObjectNav. We provide two additional ex-
amples in Fig. S6.
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Figure S2. Examples of semantic maps from Gibson. The maps contain objects from up to 15 object categories (legend on the last row).



Figure S3. Examples of semantic maps from MP3D. The maps contain objects from up to 21 object categories (legend on the last row).
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Figure S4. Examples of potential functions from Gibson. On each row, we show the complete semantic map, partial semantic map, the
area potential function, and object potential functions for two unseen objects (from left to right). The potential functions are computed at
the map frontiers using the analytical procedure described in Sec. 3.3 from the main paper. Both the potential functions range from 0.0 to
1.0, which the intensity of red indicating the strength of the potential function (1.0 is highest intensity). For the object potential function,
we state the object category on the top-right corner of the map, and also highlight the spatial locations on the map in bright blue.
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Figure S5. Examples of potential functions from MP3D. On each row, we show the complete semantic map, partial semantic map, the
area potential function, and object potential functions for two unseen objects (from left to right). The potential functions are computed at
the map frontiers using the analytical procedure described in Sec. 3.3 from the main paper. Both the potential functions range from 0.0 to
1.0, which the intensity of red indicating the strength of the potential function (1.0 is highest intensity). For the object potential function,
we state the object category on the top-right corner of the map, and also highlight the spatial locations on the map in bright blue.
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Figure S6. Qualitative examples of navigation using potential functions. On each row, we visualize parts of an ObjectNav episode on
Gibson (val) as the agent searches for and finds the goal object. For each step, we show the egocentric RGB view, the predicted semantic
map, object and area potential functions (PFs). We indicate the maximum location that the agent navigates to using a blue cross on the
PF map(s) responsible for the maximum. Row 1: The agent searches for a bed in an unexplored scene. In the first several steps of the
episode (T=1 until 110), the agent is guided by the area PF which is high near frontiers leading to unexplored areas, allowing it to explore
efficiently and gather information. The object PF plays a limited role here. After having explored sufficient parts of the environment, the
model predicts high object PF at two frontiers (one of which corresponds to the bedroom entrance), while the area PF remains high at
multiple frontiers unrelated to the object location. Guided by the signal from the object PF, the agent starts entering the bedroom at T=126,
and eventually finds the goal at T=132. Row 2: The agent searches for a toilet in an unexplored scene. In the initial steps of the episode
(T=1 to T=60), the agent is primarily guided by the area PF to explore the scene and gather information. At T=90, the object PF activates
near the toilet room entrance. Note that while the absolute value of the object PF is not very high, it is sufficient to bias the overall PF
towards the goal (and away from other frontiers). This is critical since the area PF has high values along multiple frontiers, while the object
PF focuses on frontiers that could lead to the object. The agent follows this signal to eventually reach the goal at T=104. These examples
highlight the value of the two potential functions and how they are combined to perform ObjectNav.
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