Our appendix is organized as follows:

1. Appendix A contains detailed experimental results in
the “no-side information” case. We show that adding
side-information outperforms no side-information in
all cases, including when the embedding for “no-side
information” has dimension equal to that of (side-
information + embedding).

2. Appendix B shows performance of transformation
with side-information on out-of-distribution datasets.

3. Appendix C shows a more detailed analysis of per-
formance degradation of the Backwards Compatible
Training (BCT) algorithm when applied to ¢y,e,, ON
ImageNet.

4. Appendix D reports hyperparameters and training de-
tails across all experiments.

5. Appendix E reports the results of our ablation for
the transformation function on both capacity and loss
function.

6. Appendix F reports details about embedding dimen-
sion ablations for ¢, and ¢,;q across datasets.

7. Appendix G shows our results with highly compressed
side-information.

8. Appendix H shows our results on using FCT with a
long sequence of small updates.

9. Appendix I shows our results on using FCT between
models with disjoint training objectives.

10. Appendix J We report comparisons to [30] and [47],
modified for our setting.

11. Appendix L reports the licenses of all the resources
used.

12. Appendix K summarizes how, with a decentralized
system design, the extra computational cost associated
with FCT relative to BCT can be mitigated.

A. Comparison with No Side-Information
A.1. Standard Setup

Table 7 contains detailed results for “no side-
information” in the standard setup. This corresponds to
Tables 1, 2, and 3. In terms of implementation, we use
¥(xz) = 0 as for our side-information function. We see
that side-information improves model performance across
all datasets. In particular, we see a CMC top-1 im-
provement of +3.2% on ImageNet, +1.0% on Places, and
+1.0% on VGGFace2. The magnitude of improvement on

W bora/)/h(¢oia, V), a measure of how much our trans-
formation improves the old features, is even greater, with
CMC top-1 improvements of +7.4% on ImageNet, +2.1%
on Places, and +3.2% on VGGFace2.

Finally, an argument could be made that the overall fea-
ture dimension is simply larger, when we consider side-
information feature size together with the embedding di-
mension feature size. To show the benefit of our side-
information over simply increasing the embedding dimen-
sion size, we show that a 256-dimensional feature vector
for ImageNet only results in a 0.2% improvement in CMC
top-1, far from the improvement which comes from having
good side-information (+3.2%).

A.2. Sequence of Model Updates

Table 8 contains results corresponding to the sequence
of model updates case (see Section 4.4) with no side-
information. As in the previous section, this is implemented
by setting ¢(x) = 0 for all inputs z. We denote this case
h(¢) instead of h(¢, 1)) for embedding model ¢ and trans-
formation model . All other notation is consistent with
Section 4.4.

B. Out-of-distribution Side-information per-

formance

. (¢new/h(¢old7 w))
Side-Info CMC top-1 — top-5 % mAP@1.0
None (¢o14) 145—35.2 3.7
None 16.9 — 40.7 5.6
Autoencoder 174 —41.6 5.8

alt 184 —43.1 6.3
SimCLR 20.3 —45.5 7.1
None (dnew) 219 —46.8 7.1

Table 9. Using the same ImageNet embedding models ¢4 and
dnew We analyze the same side-information strategies as Table 6
but instead evaluating on out of distribution data: the Places-365
validation set. We show that the same trends hold even out of
distribution. Note that the retrieval performance is quite poor since
ImageNet and Places-365 are very different domains.

Here we provide a more detailed ablation of the
out-of-distribution retrieval performance for various side-
information transformation methods originally presented in
Section 4.3. We present these results in Table 9. We see
the same trends from Table 6 repeated on this very different
domain.

Dotd Drew Embedding Dimension Pnew/h(¢ota) W @ota) /M Dota)
CMCtopl—5% mAP% CMCtopl—5% mAP %
ImageNet-500 ImageNet-1k 128 61.8 —80.5 39.9 51.9 —69.8 36.1
ImageNet-500 ImageNet-1k 256 62.0 — 80.9 38.7 53.8—719 35.8
Places-182 Places-365 512 34.8 —63.6 17.5 31.9 —60.4 16.4
VGGFace2-863 VGGFace2-8631 128 91.5—973 60.1 84.0 —93.4 47.7

Table 7. Detailed results in the “no side-information” case. We see a substantial improvement in retrieval performance across all datasets.

Case CMC top-1 —top-5 % mAP@1.0
o1/ 29.6 —44.1 15.5
o2/ P2 46.5 —65.1 28.7
b3/ 03 68.1 —84.4 45.0
b2/ ha2 (1) 36.5—53.5 23.7
$3/h3(d2) 61.8 — 80.5 39.9
b3/h3(ha(é1), ga(b1)) 449 —68.0 26.4
$3/h13(d1) 53.9 — 742 30.6

Table 8. Model compatibility in sequence of updates with no side-
information (see Table 5 for results with side-information). We
see a large performance degradation vi — vs3 versus with side-
information (-6.0% CMC top-1) and an even larger degradation in
the sequential case vi — va — v3 (-12.5% CMC top-1), showing
that side-information is crucial for sequential updates to prevent
feature drift.

55 brc
- ¢new/¢new
B o0/ Pord

o))
o
1

CMC Top-1 %
N
o
1

N
o
1

o
I

[1-500]
ImageNet Class Range

[501-1000]

Figure 6. CMC Top-1 performance on the validation set of Ima-
geNet for various cases by class range. Note that ¢4 has not seen
any data from classes [501-1000]. Note how ¢ng performance
is degraded primarily for the classes on which ¢4 also performs
poorly. This shows that the old model biases training of the new
model for BCT.

C. BCT New
Degradation

Model Biased Performance

In Figure 6 we show how BCT training of the new model
biases it towards the old model. Since the old model has not
seen any data from ImageNet classes [501-1000], it natu-
rally performs quite poorly on these classes. However, per-
formance on classes [1-500] is quite similar across ¢cq
and ¢o14. QSBCT sees some improvement on classes [501-

1000], however it performs 6.4% worse than ¢,,¢,, on these

classes. Given that its accuracy is similar to that of ¢,;4 and
Pnew on classes [1-500], we can conclude that the effect
of BCT training is to bias ¢2S7 to perform more similarly
to ¢o14, i.6. poorly on [501-1000]. Transferring unwanted
biases from old to new model is a crucial drawback of the
BCT method.

D. Architectures, and

Training

Hyperparameters,

D.1. Architecture Details

Embedding Models For our embedding model archi-
tectures, we use the standard ResNet [17] and Mo-
bileNetV1 [19] with penultimate layers modified to output
128 dimension embeddings (for VGGFace2 and ImageNet)
and 512 dimension embeddings (for Places-365). We find
that this architecture modification performs either the same
or better than their higher dimension counterparts. We also
observed that directly modifying the output dimension of
the penultimate layer performs equivalently to projecting
the output of the penultimate layer to a lower dimension,
as in [44].

Transformation Models See Figure 4 for the basic trans-
formation structure. The projection units in this dia-
gram are MLPs with architecture: Linear(d — 256) —
BatchNorm — ReLU — Linear(256 — 256) —
BatchNorm — ReLU, where d is the dimension for either
the embedding (d,;4) or side-information (ds;q4.). The lin-
ear layers use bias, however preliminary experiments have
shown this is not necessary. The outputs of both projec-
tion branches are concatenated together before being passed
to the “Mixer”, which has architecture Linear(512 —
2048) — BatchNorm — ReLU — Linear(2048 —
2048) — BatchNorm — ReL.U — Linear(2048 — dyeq).

D.2. Model Selection Details

We did not perform hyperparameter tuning on transfor-
mation architecture training. We reused these ImageNet hy-
perparameters on the other datasets and embedding dimen-
sion sizes. The hyperparameters for ResNet and MobileNet
training were taken from ResNetV1.5 [33], an improved
training setup for ResNet. Hyperparameter details for this
setup are provided in the in the individual dataset sections.

D.3. Hardware Details

We trained all of our models on 8 Nvidia V100 GPUs
with batch size 1024. We have found that it is possible to
decrease the batch size proportionally with the learning rate
to use with fewer resources (e.g. batch size 1024 with learn-
ing rate 1.024 corresponds to batch size 256 with learning
rate 0.256) without a drop in performance.

D.4. Side-Information

D.4.1 SimCLR

Architecture We use a standard ResNet50 [17] architecture
with feature output directly modified to 64 or 128 for all of
our SimCLR results. We add an extra BatchNorm layer to
the end of the model, as suggested in [10].

Training Most of our training procedure is taken directly
from the original SimCLR paper [9]. We use the multi-crop
augmentation procedure originating from [6], specifically
implemented as in [7].

D.4.2 Autoencoder

Training We train our AutoEncoder with the Adam opti-
mizer using learning rate 3 x 10~* and weight decay 0.0 for
100 epochs with cosine learning rate decay and 5 epochs of
linear warmup with batch size 512.

D.5. ImageNet-1k Training

Transformation We train the transformation for 80 epochs
with the Adam [21] optimizer. We use learning rate 5 X
104, weight decay 3.0517578125 x 107>, cosine anneal-
ing learning rate schedule with one cycle [27] with linear
warmup [16] for 5 epochs, taken from ResNetV1.5 [33].
At epoch 40 we freeze the BatchNorm statistics. We find
empirically that this makes training more stable for smaller
embedding sizes. We suspect that there is some configu-
ration of hyperparameters and learning rates where this is
not necessary, however we were not able to find it. For
normalization methods with no batch statistics (e.g. Lay-
erNorm [2]), we find that this is not necessary, but we get
slightly worse performance (61.2% vs 61.6% CMC top-1
in the no side-information case with LayerNorm instead of
BatchNorm).

Old and New Embedding Models We train the old
and new embedding models (standard ResNet50 with 128
dimension embedding) with ResNetV1.5 hyperparame-
ters [33]. We train with batch size 1024, learning rate 1.024,
weight decay 3.0517578125 x 10~5, momentum 0.875, and
cosine learning rate decay with 5 epochs of linear warmup
for 100 total epochs.

D.6. Places-365 Training

Transformation We train the Transformation for the same
duration and with the same hyperparameters as for Ima-
geNet.

Old and New Embedding Models We train the old and
new embedding models for the same duration and with the
same hyperparameters as for ImageNet. We use embedding
dimension 512 for our ResNet50 models. We explain this
choice in Appendix F.

D.7. VGGFace2 Training

Transformation We train the Transformation for the same
duration and with the same hyperparameters as for Ima-
geNet. Since the embeddings are normalized in this in-
stance, we normalize the outputs of the Transformation dur-
ing both training and inference.

Old and New Embedding Models We train VGGFace2
with the ArcFace [11] loss function. Following [1], we
use a margin of 0.5 and scale of 64, with embedding di-
mension 128 (we find this to perform equally to embedding
dimension 512, which was used in [11]). We also resize
to 3x224x224 as we find this does better than 3x112x112,
which is a standard for face retrieval applications. We train
the old and new embedding models for the same duration
and with the same hyperparameters as for ImageNet.

D.8. BCT Modifications

Old and New Embedding Models We use the author pro-
vided code [43] with a few modifications. In particular, we
add the ResNetV 1.5 parameters (stated previously) to prop-
erly compare with our method and modify the output em-
bedding dimension to 128 (for ImageNet and VGGFace2)
and 512 (for Places-182 and Places-365). We find that
simply projecting the output layer performs equally well.
These modifications result in significant improvement over
the original code provided. In particular, 25T /¢BCT per-
formance goes from 60.3% CMC top-1 before our modifi-
cations to 62.4% CMC top-1 after our modifications.

E. Transformation Size Ablation
E.1. Transformation Capacity and Training

The transformation function A should have small mem-
ory foot-print and computational cost. In Table 11, for
the same setup as ImageNet experiment as in Section 4,
we show accuracy of the transformed features for a differ-
ent transformation model architectures with growing width.
In Table 12 we compare effect of loss function. For KL-
divergence, we apply both ¢,,¢,, and h(dei4, 1) to the lin-
ear classifier trained with the new model (which is frozen),
get log-probabilities, and then apply the Softmax function.
We also considered reversed KL-Divergence. Empirically,

ImageNet-{500, 1k}

Places-{182, 365}

VGGFace2-{836, 8631}

Embedding Size
¢old/¢old ¢new/¢new ¢old/¢old ¢new/¢new <Zﬁold/ﬁbold ¢new/¢new
128 46.5 68.0 29.5 21.9 84.0 96.6
256 48.0 67.8 29.7 23.2 83.8 95.7
512 49.1 67.4 29.6 37.0 83.6 96.4
1024 49.0 67.1 29.5 36.7 84.1 95.9
2048 48.5 67.9 29.8 37.0 83.9 95.1

Table 10. Embedding dimension size ablation on ImageNet, Places-365, and VGGFace2 for CMC top-1. The ¢iq architectures are
ResNet50 for Places and ImageNet and ResNet18 for VGGFace2. The ¢y.., architectures are ResNet50 for all datasets. We train ¢4 on
ImageNet-500, Places-182, and VGGFace2-863 and ¢, on ImageNet-1k, Places-365, and VGGFace2-8631, respectively. We chose to
use the dimension corresponding to the best performing ¢, for each dataset (bolded). In the case of a tie, we chose the lower dimensional

model.

(¢new/h(¢old, 111))

of params (M) CMC top-1 — top-5 %

0.79 62.9 —81.0
1.9 64.1 —81.8
5.7 65.0 —82.3
19.6 65.0 —82.5

Table 11. Effect of transformation function capacity on accuracy.
Accuracy seems to saturate at a relatively small number of pa-
rameters. Note that there is not a one-to-one comparison between
number of parameters and FLOPS, as convolutional layers tend to
have a higher FLOPS to parameter count ratio. See Figure 3 for a
direct comparison of these attributes.

(¢new/h(¢old7 w))

Loss CMC top-1 — top-5 %
MSE 65.0 —82.3
KL 60.7 — 783

KL-Reversed 55.7—176.1

Table 12. Effect of loss function on training of FCT transforma-
tion.

MSE with target feature outperforms other choices. This
has also been observed recently in [4].

F. Embedding Dimension ablation

In this section, we report the effect of embedding di-
mension in performance of embedding models for Ima-
geNet, Places-365, and VGGFace2. The old and new
embedding models’ top-1 retrieval performance is shown
for different embedding dimensions in Table 10. In all
cases we directly modify the feature layer output size,
rather than projecting the original higher dimension out-
put (e.g., 2048-dimensionsonal features of ResNet50) to a
lower dimension, as in [44]. Empirically, for ImageNet-
1k and VGGFace2-8631 embedding dimension of 128 ob-
tains highest accuracy, while for Places-365, an embed-

TY 55 e U Bound
>0 ¢i/¢; (Upper Bound)
s 45 50 @ild1-. i (w/ side-info)
et —o— /1. i (w/o side-info)
xS 45-
-7
Iy
2% 40+
Ep
Q¥ 35+
365
301 :

1 2 3 4 5 6
Model version (i)

Figure 7. Sequence of updates between models trained on subsets
of CIFAR-100 dataset with 50, 60, 70, 80, 90, and 100 classes.

ding dimension 512 performs the best. Interestingly, old
model performance is superior to new model performance
for Places-365 at embedding dimensions 128 and 256, val-
idating the notion that we need a higher embedding dimen-
sion for that particular dataset.

G. Compressed SimCLR results

[38] presents a method which results in a highly com-
pressed contrastive representation based on SimCLR with
similar performance. We used the method in [38] to
train a SimCLR model with feature dimension € Z3%
on ImageNet-500 to be used as side-information. This is
a similar setup as in Table 1, but with a 32 times more
compressed side-information feature vector. We report the
numbers for this case in Table 13. We see slightly worse
performance than with standard SimCLR (-0.9%), how-
ever this shows that side-information representations can
be compressed while still maintaining favorable transfor-
mation properties.

Case CMC top-1—5 (%) mAP@1.0
Gotd/ Pold 21.9—46.8 7.09
¢7L€Ul/¢01d 03—1.5 0.12
Prew/ Pnew 37.0 — 65.1 17.0
h(@ota, ¥)/P(@ota, ¥) 31.7—595 16.1
Grew /M Potd) 333 —623 16.9
¢n,cw/h(¢old7 1/)) 35.1 —63.7 17.5

Table 14. FCT compatibility results when the old and new archi-
tectures are trained on completely disjoint objectives. ¢4 1S a
ResNet50-128 trained on ImageNet-1k and ¢nc. is @ ResNet50-
512 trained on Places-365. Side-information is SimCLR trained
on ImageNet-1k. FCT is able to get very close to the upper bound
even in this challenging scenario.

Case CMC top-1—5 (%) mAP@1.0
h(@ota,)/ P(Pota, ¥) 57.2—1747 40.0
¢7Lew/h(¢old7 1/)) 64.1 — 82.0 42.7

Table 13. Results for the ImageNet retrieval setup (see Section 4)
with a highly compressed SimCLR representation [38].

H. Long Sequence of Small Updates

In Figure 7, we demonstrate the efficacy of our method
for a series of small updates. Model ¢; is a ResNet50-128
trained on CIFAR-(10¢ 4 40), where CIFAR-N is a sub-
set of CIFAR-100 including only the first N classes. Fol-
lowing our notation from Section 4.4, ¢;/¢1_,. _,; means
the query embedding uses ¢; for indexing and the gallery
embedding is obtained with the chain of transformations
hi—1—iohi—o_y;—1...0 h12(d1,11), where each trans-
formation h;_q_,; uses side-information v, ;1. We
show that we can achieve meaningful improvement in per-
formance even after the model has drifted quite significantly
from ¢; through a chain of updates. Further, the impor-
tance of side-information for sequence is evidence, as with-
out side-information, we sometimes fall short of backward
compatibility as defined by [44].

I. ImageNet-1k to Places-365 evaluated on
Places-365

In this scenario, the training objectives of ¢,;q and ¢y eqp
are completely disjoint. This means they share no train-
ing data in common. We train ¢,;; on ImageNet-1k and
Pnew on Places-365. For side-information, we used Sim-
CLR trained on ImageNet-1k. We use the Places-365 val-
idation set as both the query and gallery sets for retrieval
evaluation. We see that FCT is quite successful in this in-
stance with full results presented in Table 14. We are able to
maintain good model compatibility across different training
objectives.

server

users
gallery sets 515 -
(encrypted) & &

x /Z\
user user user
gallery) . \

fe .. sidecinfo: features. sideinfo:
e (o | | i —
features features features features

Figure 8. (left) A centralized system where data and compute re-
side on a server. Backfilling cost for such a system is mainly due to
high compute. (right) A decentralized system where data is stored
encrypted on a server, and FCT computations take place privately
on edge devices. Storing all data on the user side is infeasible
due to capacity constraints, so only side-info and embeddings are
stored on device. The primary backfilling cost in this scenario is
transferring images from the server to every edge device.

J. More Comparisons to Related Methods

In the absence of provided code, we have reimple-
mented [30] and [47] and modified their use for our set-
ting. For [30], we modify the embedding dimensions to
128, change the loss function to cross entropy instead of
ArcFace, and only train the forward transformation, but oth-
erwise keep the original hyperparameters. For [47], we use
their residual bottleneck transformation (RBT) architecture
for forward transformation instead of our MLP. For old to
new transform performance, RBT achieves 34.0% CMC
top-1 (dnew/h(dorq) in our table) while LCE achieves
56.5%.

K. Decentralized Design

FcT-transformation computation is massively dis-
tributed on edge-devices.

Compared to BCT, FCT comes with two additional costs:
(1) when a new image is being added to the gallery-set we
need to compute and store side-information, and (2) when
the embedding model is updated we need to perform a trans-
formation. (1) is a one-time computation for every new im-
age added to the system (an incremental cost) and the side-
information is small relative to the size of the image. For (2)
the transformation requires access to old embeddings and
side-information. This is a small computation compared to
full backfilling (i.e., running the new model on all images
in the gallery set) as demonstrated in Figure 3.

For many applications FCT can be implemented in a
decentralized fashion (Figure 8). In this setup, we have
edge devices, each with their own gallery sets. When a
new image is added, its embedding and side-information
are computed and stored on device, and the raw image is
encrypted and transferred to a remote server for storage. To

update the model from old to new, the FCT transformation
runs on device. This design has three benefits: 1) The raw
data always remains encrypted outside of the device with-
out need to download it every time the model is updated.
2) Embedding and side-information computations are pri-
vately performed on-device one-time for every new image.
3) The small FCT transformation computation is massively
distributed on edge-devices when updating the model.

L. Licenses

L.1. Software

PyTorch [36] is under the BSD license.

Python is under a Python foundation license (PSF)
L.2. Datasets

ImageNet [4 1] has no license attached.

Places-365 [52] is under the Creative Commons (CC BY)
license.

VGGFace2 [5] has no license attached.

