
URF: Urban Radiance Fields

Supplementary Material

The following supplemental material contains additional
implementation details, ablation studies, qualitative results,
and a discussion of potential negative societal impacts that
would not fit in the main paper.

A. Additional Implementation Details
A.1. Network architecture

(x, y, z)

(dx, dy, dz)

exposure code
(one per image)

sky color

color

density

A�ne Color
Transformation

Exposure

Radiance �eld

Sky

,

+* =

�nal
color

Figure 1. Network architecture

Our network architecture is illustrated in Fig. 1 and has
three components. The first component is the neural radiance
field network, which is designed similarly to the original net-
work in NeRF [10]. It consists of a series of fully connected
layers of width 256 that take as input the 3D location of a
point x, y, z and the viewing direction dx, dy, dz and output
the RGB color and the density at that point. The second
component is the sky network, which takes as an input the
direction dx, dy, dz of a ray pointing at a sky point, and
outputs its color. Finally, the third component is an exposure
compensation network that takes as an input an exposure
latent code and estimates the affine transformation to be ap-
plied to the color values output by the radiance field network.
There is a different affine transformation per image. This
compensates for the different exposures across input images.
All three network are trained jointly so that the final colors
output by the model will match the pixel colors in the input
images.

A.2. Training Protocol

We train a separate network for each baseline model (Sec.
5.2) and each variant of our model, applies to each scene.
Every network is trained with the same protocol, detailed
here. We use a TPU v2 architecture with 128 cores [5] using
Tensorflow 2 [1]. We used the Adam optimizer [7] with a
learning rate scheduler that included two stages. The warm
up stage lasts 50 epochs, with the learning rate starting at
0.0005 and growing linearly until 0.005. After warm up, the
main stage lasts 500 epochs, with the learning rate starting at

0.005 and then decaying exponentially with exponent 0.98.
The ray batch size was set to 2048 per core and the total
training time was about one day per network.

For ray sampling, we use a stratified strategy where the
intervals are evenly spaced in log scale, and we sample 1024
samples per ray. We did not perform hierarchical sampling.
Each batch contains rays randomly sampled from all images
(and similarly for the lidar points)

The 3D location of a point is described using integrated
positional encoding [3] with L = 10 frequencies. For the
viewing direction we use the original positional encoding
representation with 4 frequencies.

B. Additional Ablation Studies
B.1. Effect of margin ε

Avg Error↓ CD↓ Acc↑ F↑
Fixed 1.007 2.195 0.814 0.871
Stepwise 0.776 1.818 0.849 0.905
Linear 0.238 0.508 0.903 0.961
Exponential 0.249 0.863 0.901 0.966

Table 1. Margin decay (ε) – We evaluate different decay strategies
for the margin ε during training in the Rome scene. The margin
controls the contribution of the lidar losses Lnear and Lempty. Hav-
ing a fixed margin results in lower performance, while gradually
decreasing it performs the best.

As we observed in Sec. 5.5 of the main paper, the empty-
space loss can actually decrease 3D reconstruction perfor-
mance as it introduces a strong preference for empty space.
Using the near-surface loss, which is complementary to
empty-space by construction, alleviates this effect. In Tab. 1
we vary the margin ε in Eq. (16) and Eq. (17) during training
using different strategies: Fixed: keep a constant margin
throughout training (as in [2]); Stepwise: start with a large
margin (thus only the near-surface loss is activated) and af-
ter N = 50 epochs the margin suddenly becomes small;
Linear/exponential: gradually reduce the margin from large
to small with a linear or an exponential schedule. For all
methods, the smallest value ε was set to 20cm. The linear
and exponential strategies perform similarly and much better
than the fixed and stepwise ones, indicating that the empty-
space loss is best applied after the training process manages
to infer a good initial version of the scene structure.

B.2. Effect of exposure handling

In Tab. 2 we expand the ablation experiment in Sec. 5.5 of
the main paper, comparing our affine transformation model



D Avg Error↓ CD↓ Acc↑ F↑
Direct 48 1.071 1.28 0.159 0.362
Affine 0.98 1.007 0.253 0.47

Direct 4 1.049 2.062 0.247 0.477
Affine 0.885 1.564 0.262 0.524

Table 2. Exposure handling – We compare our affine transforma-
tion model with the direct input of the exposure code to the network.
Using an explicit color transformation for the different exposures
results in better reconstruction.

versus directly providing the exposure latent code to the net-
work for the Rome scene. We experiment with two different
dimensions for the latent codes, D = 48 as in NeRF-W [9]
and a much smaller one D = 4. As Tab. 2 shows, our affine
transformation approach performs better in all 3D recon-
struction metrics, for both values of D. We also observe that
both the affine and the direct approach perform better when
the exposure latent code has smaller dimensionality, thus
reduced capacity. For the direct approach this is in accor-
dance to the observations in NeRF++ [12] about the viewing
direction: implicit regularization (limiting the capacity) of
the latent code can increase the performance. For the affine
case, this indicates that there exist a compact latent space
that can describe the color transformations appearing in the
dataset and it is easier to learn.

B.3. Tanks and Temples dataset

In order to demonstrate that our method does not only
work on the Street View dataset, we ran it on Tanks and
Temples [8]. Tab. 3 below shows that 3D reconstruction
performance continuously improves while gradually adding
our proposed components. In the ”+SfM” column instead of
lidar supervision, we run SfM using COLMAP and utilize
the estimated 3D keypoints to supervise our losses from Sec.
4.2. A held-out set of 3D keypoints was used as ground truth
for evaluation.

MipNeRF
(base)

+exposure,
+sky

+SfM (full)

Avg Err ↓ 1.260 1.082 0.966
Acc ↑ 0.735 0.780 0.805

Table 3. 3D Reconstruction – We compare variations of our model
with the baseline (MipNeRF [3]) for the task of 3D reconstruction.

In terms of novel view synthesis (Fig. 2), our results on
this dataset are state-of-the-art. We obtain 26.17 PNSR vs
22.37 for NeRF++[67], one of the best-performing previous
methods, and similarly for LPIPS (0.246 vs 0.391, lower is
better).

Novel view 3D reconstruction

Figure 2. Novel view synthesis and 3D reconstruction – We
visualize a novel view and the corresponding 3D reconstruction for
the Playground scene from Tanks And Temples [8].

B.4. Additional discussions

DS-NeRF [6] originally inputs depth cues from SfM.
In our experiments, we modify it to input lidar in-
stead. We do so using their expected depth supervi-
sion loss, as opposed to our three losses (Sec. 4.2).
However, the expected depth loss does not
constrain the distribution of weights along
the ray, e.g. be peaky close to the surface.
Since this loss focuses on just a single value, the density
along a ray can be very broadly distributed without penaliza-
tion (see inset for two distributions with the same expected
value). Moreover, DS-NeRF does not handle varying expo-
sures, nor does it take care of the sky.

Additionally, we found that NeRF-W [9] image-
dependent latent code is overfitting image-independent ef-
fects by inserting mid-density clouds along the camera line
of sight. This results in a suboptimal 3D representation
that makes inferring geometry difficult for held-out views.
In the Held-out Building setting (see Sec. 5.1 for details),
this overfitting issue is less severe as more of the scene is
observed.

C. Additional Qualitative Results
In Fig. 3 and 4 we show more visualizations of extracted

colored meshes for different scenes. The color of every
vertex is estimated by querying the radiance field network in
that particular location. This representation can be used in
common 3D editing software such as Blender [4] (first and
second column in Fig. 4) and it allows for real time rendering
on the browser, e.g. using ThreeJS [11] (third column in
Fig. 4). Note that this way of rendering is different than the
volumetric rendering in NeRF models, which is continuous
and incorporates implicitly the view dependent appearance
changes. Finally, we present additional results for novel view
synthesis in Fig. 5.

D. Potential Negative Societal Impacts
This section discusses potential negative impacts of our

work on society.

Privacy. Experiments in this paper are run with data from
a Street View dataset that contains image and lidar data



Truck Train Lighthouse Family Caterpillar

Figure 3. Colored meshes – We visualize the colored meshes estimated by our method for several Tanks And Temples [8] scenes.

Geometry Texture Vertex color

Figure 4. Rendering colored meshes – After extracting a color
mesh using our model, we can render its geometry and texture in
a 3D environment, or render the vertex colors in real time on a
browser.

captured in public outdoor spaces. Of course, datasets of
this type could potentially impact personal privacy. To mit-
igate this issue, we work only with images where people
and license plates have been blurred and masked, we fol-
low strict guidelines regarding how the data must be stored
securely, and we do not redistribute any data, all in accor-
dance with the privacy policy mandated by the data provider
(https://policies.google.com/privacy).

Fairness. Experiments in this paper were run on data se-
lected from twelve cities (Seattle, São Paulo, Toledo, Cape
Town, Tokyo, Zurich, Rome, St Johns, Taipei, Sydney, Mel-
bourne, and New York). Those cities were selected to pro-
vide a sampling of regions from around the world (six conti-
nents are represented) and to provide challenging test cases
to stress the proposed algorithms. However, the sampling is
strongly biased towards urban areas in major cities in this
early study. This bias will be mitigated somewhat in future
studies when the algorithms are run on all available data.

Fakes. This paper introduces a system to synthesize images,
and thus could be used to create images with misleading or
fake content, either intentionally or not. For example, the
system might be better at reproducing imagery for certain
types of shapes, materials, or lighting, leading to misleading
novel images with systematic inaccuracies. Or, an adversary
might be able to give the system images that are not from
the same scene and/or do not match the lidar in order to
achieve novel image results that do not match the real world.

To mitigate these risks somewhat, we expect the system
to be deployed only in controlled settings, where the input
images are vetted and stored securely, and a sampling of
the output images are checked manually for quality control.
Additionally, we will clearly identify computer-generated
images as synthetic.

Energy consumption. The paper proposes a method to train
a coordinate neural network to produce novel images for a
scene using volume rendering. As in any system of this
type (e.g., NeRF), the optimization procedure to train the
network is quite compute intensive, and thus has a negative
impact on the environment due to its energy consumption.
However, using lidar data as proposed in the paper helps
the optimization converge more quickly, which saves some
energy. Yet still the energy usage is very high, and further
optimizations are warranted before any methods based on
volume rendering with coordinate neural networks are ready
to deploy at scale.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 1

[2] Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman,
Matthias Nießner, and Justus Thies. Neural rgb-d surface
reconstruction. arXiv, 2021. 1

[3] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. ICCV, 2021. 1, 2

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 2

[5] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc



ZurichTaipei Rome New York Seattle

São Paulo Toledo Cape TownSt Johns Melbourne

Figure 5. Novel views

Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike
Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-
worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Mag-
giore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Sev-
ern, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan
Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
datacenter performance analysis of a tensor processing unit.
SIGARCH Comput. Archit. News, 45(2), 2017. 1

[6] Jun-Yan Zhu Kangle Deng, Andrew Liu and Deva Ramanan.
Depth-supervised nerf: Fewer views and faster training for
free. arXiv:2107.02791, 2021. 2

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[8] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM TOG, 2017. 2, 3

[9] Ricardo Martin-Brualla, Noha Radwan, Mehdi Sajjadi,
Jonathan Barron, Alexey Dosovitskiy, and Daniel Duckworth.
NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In CVPR, 2021. 2

[10] Ben Mildenhall, Pratul Srinivasan, Matthew Tancik, Jonathan

Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing
Scenes as Neural Radiance Fields for View Synthesis. In
ECCV, pages 405–421. Springer, 2020. 1

[11] three.js. three.js, 2015. 2
[12] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020. 2


	. Additional Implementation Details
	. Network architecture
	. Training Protocol

	. Additional Ablation Studies
	. Effect of margin 
	. Effect of exposure handling
	. Tanks and Temples dataset
	. Additional discussions

	. Additional Qualitative Results
	. Potential Negative Societal Impacts

