
6. Supplementary Material

6.1. DSS Rendering

For one of our experimental comparisons, we used Dif-
ferentiable Surface Splatting (DSS) [46] to minimize the
image loss. DSS renders each point as a circle, which
projects to an ellipse, where the circle’s normal is the sur-
face normal. Surface normals for a particle-represented liq-
uid are computed using the color field [28] which is
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at pi 2 R3. The surface normals should point outwards
from the reconstructed liquid which results in a negative
change in color field. Therefore the normal is set to:
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for particle pi. To compute the liquid volume color’s gradi-
ent, the following expression is used:
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after applying the chain rule to (21).

Laplacian smoothing is applied for more consistent nor-
mals, similar to [47], by averaging the particle positions the
color field is being evaluated about in (21). The particle
averages are computed as
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where �l is the Laplacian average weight and pj replaces
pj in (21). In low particle count situations, the normal com-
putation in (22) can produce undesirable effects such as ar-
tifacts on the edges of the liquids. To account for this, the
evaluation of points pi in (22) are given a small offset to-
wards the virtual camera which will eventually render the
surface. The offset is computed as:

�pi = �c
c� pi

||c� pi||
(25)

where c 2 R3 is the position of the virtual camera, �c is the
amount of the offset, and �pi is added to pi in (22).

The particle position, normal pairs, {pi
,ni}Ni=1, are di-

rectly fed into the DSS which renders each point, pi, as a
circle whose plane is tangent to its normal, ni. The circles

are projected to ellipses, denoted as E(pi
,ni), and averaged

with their neighboring projected circles, hence being called
Elliptical Weighted Averaging (EWA). In the problem for-
mulation for this work, we assume only knowledge of an
observed visibility mask I. Therefore, we simplify the ren-
dering by not conducting the EWA and only render a surface
mask from the projected ellipses. Written mathematically,
the masked image at pixel [u, v]> from a single particle and
normal pair is: DSS computes each

hu,v(p
i
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>:

1 if [u, v]> 2 E(pi
,ni)

0 if pi is occluded
0 otherwise

(26)

The rendered surface is evaluated as a summation of all the
masked images from (26):
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where ⌘i normalizes the pixel value. Finally, gradients of
the rendered liquid surface with respect to particle positions
are computed using the approximation presented by Yifan et
al. to minimize the image loss [46]. The normal smoothing
values are set to �l = 0.2 and �c = 0.2r, and the orig-
inal proposed kernels are used for (21) [28] and (24) [47].
The gradient step size and its threshold for detecting a local-
minima are set to ↵I = 10�4 and �s = 0.2 respectively.

6.2. Schenck and Fox Constraints

Schenck and Fox previously proposed liquid position
constraints that represent: pressure, cohesion, and surface
tension [41]. These constraints replaced the proposed den-
sity constraint from (5) for comparison in our experiments.
This is done by replacing �p⇢ to solve (5) in lines 7 and 8
in Algorithm 1 with:

�pp + ↵c�pc + ↵s�ps (28)

where �pp,�pc,�ps solve the pressure, cohesion, and
surface tension constraints respectively and ↵c,↵s are the
cohesion and surface tension weights respectively. Refer to
the original paper for exact expressions to the constraint so-
lutions [41]. The cohesion and surface tension weights are
optimized for in the original work to conduct real-to-sim
registration. However, this cannot be done with our problem
setup because it requires prior information on the amount of
liquid volume there is (i.e. how many particles there are).
Therefore, instead the weights are preset to ↵c = 0.05 and
↵s = 0 (the surface tension constraint only yielded unstable
behavior so it was turned off).

6.3. Source Estimation

A simple single, static source estimation technique is de-
veloped to highlight how the proposed method can be ex-
tended. Let ŝt 2 R3 be the estimated liquid source location



Figure 9. From left to right, the sequence shows the steps for mesh generation from the reconstructed liquid. The left-most figure is
the reconstructed liquid in particle representation. The next figure shows the densely generated surface points and normals from the
reconstructed liquid. The last two figures show the generated surface mesh from the surface points and normals without and with the
collision mesh.

in the camera frame at time t and particles are inserted ac-
cording to an estimated flow rate of f̂t particles per timestep
at the source location. Note that no velocity prediction is
conducted for the inserted particles as there is no initial ve-
locity. This reduces the number of parameters to estimate
to ŝt and f̂t.

To update the liquid source location, ŝt, we compare the
source particle locations after completing the optimization
in (1) against their pre-optimized location. Let the initial
and optimized particle locations emitted from the source be
denoted as pn

s 2 R3 for n = 1, . . . , f̂t and pn⇤
s 2 R3 for

n = 1, . . . , f̂t respectively. Then the update rule given to
the source location is:
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where ↵ŝ is adjusted according to:

↵ŝ = 1/
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f̂i (30)

so the source becomes less adjusted as more particles have
been inserted since the source is assumed stationary.

The liquid source rate, f̂t, has an integer effect on the
reconstruction, and we adjust it at every time step based on
how many particles are duplicated or removed during the
optimization of (1) after inputting the source particles for
that timestep. The expression is:

f̂t = ↵f̂�Nt + f̂t�1 � �f (31)

where �Nt is the cumulative increase of particles (e.g.
could be negative if particles are removed) at timestep t,
↵f̂ adjusts the reaction rate to the insertion/removal of par-

ticles, and �f is a constant decay rate. Note that f̂t is esti-
mated as a non-integer value, however is applied as an in-
teger by rounding (i.e. only an integer number of particles
can be inserted per timestep). The decay rate, �f is used
ensures stability by driving the flow rate to 0 when no new
information from �Nt can be leveraged. The reaction rate
and decay rates are set to ↵f = 0.1 and �f = ↵f̂/2 respec-
tively.

6.4. Mesh Generation

For visualization purposes, the reconstructed liquid can
be converted to a surface mesh. A dense, uniformly spaced,
grid of 3D points is generated. Surface points, gk, from the
grid points are then selected by thresholding the gradient of
the color field [28]:

@c(g)/@gk � �g (32)

where the color field, c(·), is defined in (21) and �g is the
threshold. The surface normals for each surface point is
computed the same as (22). The collection of surface points
and normals are then converted to a mesh using Open3D’s
implementation of [49] Poisson surface reconstruction [20].
Fig. 9 shows an example of this process. The grid points,
which the surface points are selected from, are spaced at
3mm, the gradient threshold, �g , is set to 0.5, and the depth
for Poission surface reconstruction is set to 12. Note that
figures of particles and mesh renderings in this paper are
done with Open3D [49].



Figure 10. Sequence of reconstruction results from Endoscopic Trail 3 where the rows from top to bottom show: endoscopic image, our
complete approach, and our source approach.

Figure 11. Sequence of reconstruction results from Pouring Milk dataset where the rows from top to bottom show: image, our complete
approach, and our source approach.

Method Simulation Endo Trail 1 Endo Trial 2 Endo Trail 3 Pouring
No Constraints [22] �0.03± 0.12 �0.25± 0.20 �0.09± 0.23 �0.01± 0.29 �0.08± 0.14

No Density 0.89± 3.7 0.48± 0.65 1.0± 0.94 0.91± 1.0 66± 85

No Collision (�5.26± 61)10�5 (�3.2± 4.9)10�3 (�1.4± 3.3)10�3 (�3.7± 8.7)10�4 (�0.33± 11)10�3

Schenck & Fox [41] (�2.3± 83)10�2 �0.11± 0.04 �0.12± 0.05 �0.11± 0.04 0.21± 0.37

DSS [46] (�1.3± 25)10�3 (�4.6± 8.4)10�3 (�4.9± 6.6)10�3 (�6.4± 6.4)10�3 (�5.2± 32)10�3

Uniform (�0.05± 14)10�3 (�2.1± 4.5)10�3 (�2.2± 3.4)10�3 (�1.4± 3.8)10�3 (1.3± 7.3)10�3

No Prediction (�0.51± 9.9)10�3 (�3.1± 4.6)10�3 (�1.5± 3.4)10�3 (�3.5± 5.0)10�3 (�4.6± 14)10�3

Ours (1.2± 13)10�2 (�1.7± 3.8)10�3 (�2.3± 4.1)10�3 (�1.2± 3.0)10�3 (�0.08± 4.4)10�3

Our Source (�1.6± 15)10�2 (�1.2± 3.5)10�3 (�1.9± 4.5)10�3 (�1.6± 8.5)10�3 (�0.24± 7.3)10�3

Table 1. Mean and standard deviation of the density constraint, defined in (5), for the real life experiments. The density constraint ensures
incompressibility for the reconstructed liquid and should be 0 when the constraint is satisfied. These results show that when applying our
constraint solver, the incompressibility property is met. Meanwhile Schenck & Fox’s constraints were unable to reach similar performance.



Method Simulation Endo Trail 1 Endo Trial 2 Endo Trail 3 Pouring
No Constraints [22] 0.469± 0.133 0.907± 0.034 0.904± 0.058 0.871± 0.063 0.798± 0.167

No Density 0.822± 0.096 0.915± 0.055 0.874± 0.214 0.919± 0.025 0.867± 0.054

No Collision 0.410± 0.241 0.904± 0.026 0.899± 0.048 0.761± 0.177 0.869± 0.078

Schenck & Fox [41] 0.217± 0.113 0.437± 0.319 0.882± 0.052 0.830± 0.100 0.039± 0.221

DSS [46] 0.759± 0.123 0.916± 0.042 0.909± 0.081 0.917± 0.032 0.815± 0.079

Uniform 0.826± 0.127 0.900± 0.056 0.891± 0.061 0.891± 0.071 0.576± 0.205

No Prediction 0.896± 0.049 0.904± 0.031 0.899± 0.046 0.905± 0.020 0.890± 0.084

Ours 0.889± 0.049 0.902± 0.054 0.905± 0.051 0.910± 0.026 0.849± 0.071

Our Source 0.891± 0.041 0.911± 0.034 0.908± 0.055 0.913± 0.026 0.843± 0.061

Table 2. Mean and standard deviation of IoU for the real life experiments. The results show that our reconstruction approach is able to
achieve comparable image loss performance as the best from No Constraints, No Density, No Collision and No Prediction comparisons.
This implies that our approach is effective at converging in image loss with additional constraints (density and collision) and prediction.


