
Appendix

Figure 11. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 512
2 images.



A. Detailed Information on Denoising Diffusion Models

Diffusion models can be specified in terms of a signal-to-noise ratio SNR(t) =
α2

t

σ2

t

consisting of sequences (αt)
T
t=1 and

(σt)
T
t=1 which, starting from a data sample x0, define a forward diffusion process q as

q(xt|x0) = N (xt|αtx0, σ
2
t I) (4)

with the Markov structure for s < t:

q(xt|xs) = N (xt|αt|sxs, σ
2
t|sI) (5)

αt|s =
αt
αs

(6)

σ2
t|s = σ2

t − α2
t|sσ

2
s (7)

Denoising diffusion models are generative models p(x0) which revert this process with a similar Markov structure running

backward in time, i.e. they are specified as

p(x0) =

∫

z

p(xT )

T
∏

t=1

p(xt−1|xt) (8)

The evidence lower bound (ELBO) associated with this model then decomposes over the discrete time steps as

− log p(x0) ≤ KL(q(xT |x0)|p(xT )) +
T
∑

t=1

Eq(xt|x0)KL(q(xt−1|xt, x0)|p(xt−1|xt)) (9)

The prior p(xT ) is typically choosen as a standard normal distribution and the first term of the ELBO then depends only on

the final signal-to-noise ratio SNR(T ). To minimize the remaining terms, a common choice to parameterize p(xt−1|xt) is to

specify it in terms of the true posterior q(xt−1|xt, x0) but with the unknown x0 replaced by an estimate xθ(xt, t) based on

the current step xt. This gives [44]

p(xt−1|xt) := q(xt−1|xt, xθ(xt, t)) (10)

= N (xt−1|µθ(xt, t), σ
2
t|t−1

σ2
t−1

σ2
t

I), (11)

where the mean can be expressed as

µθ(xt, t) =
αt|t−1σ

2
t−1

σ2
t

xt +
αt−1σ

2
t|t−1

σ2
t

xθ(xt, t). (12)

In this case, the sum of the ELBO simplify to

T
∑

t=1

Eq(xt|x0)KL(q(xt−1|xt, x0)|p(xt−1) =
T
∑

t=1

EN (ǫ|0,I)
1

2
(SNR(t− 1)− SNR(t))‖x0 − xθ(αtx0 + σtǫ, t)‖

2 (13)

Following [29], we use the reparameterization

ǫθ(xt, t) = (xt − αtxθ(xt, t))/σt (14)

to express the reconstruction term as a denoising objective,

‖x0 − xθ(αtx0 + σtǫ, t)‖
2=

σ2
t

α2
t

‖ǫ− ǫθ(αtx0 + σtǫ, t)‖
2 (15)

and the reweighting, which assigns each of the terms the same weight and results in Eq. (1).



B. Image Guiding Mechanisms

Samples 2562 Guided Convolutional Samples 5122 Convolutional Samples 5122

Figure 12. On landscapes, convolutional sampling with unconditional models can lead to homogeneous and incoherent global structures

(see column 2). L2-guiding with a low resolution image can help to reestablish coherent global structures.

An intriguing feature of diffusion models is that unconditional models can be conditioned at test-time [15, 79, 82]. In

particular, [15] presented an algorithm to guide both unconditional and conditional models trained on the ImageNet dataset

with a classifier log pΦ(y|xt), trained on each xt of the diffusion process. We directly build on this formulation and introduce

post-hoc image-guiding:

For an epsilon-parameterized model with fixed variance, the guiding algorithm as introduced in [15] reads:

ǫ̂← ǫθ(zt, t) +
√

1− α2
t ∇zt log pΦ(y|zt) . (16)

This can be interpreted as an update correcting the “score” ǫθ with a conditional distribution log pΦ(y|zt).

So far, this scenario has only been applied to single-class classification models. We re-interpret the guiding distribution

pΦ(y|T (D(z0(zt)))) as a general purpose image-to-image translation task given a target image y, where T can be any

differentiable transformation adopted to the image-to-image translation task at hand, such as the identity, a downsampling

operation or similar.



As an example, we can assume a Gaussian guider with fixed variance σ2 = 1, such that

log pΦ(y|zt) = −
1

2
‖y − T (D(z0(zt)))‖

2
2 (17)

becomes a L2 regression objective.

Fig. 12 demonstrates how this formulation can serve as an upsampling mechanism of an unconditional model trained on

2562 images, where unconditional samples of size 2562 guide the convolutional synthesis of 5122 images and T is a 2×
bicubic downsampling. Following this motivation, we also experiment with a perceptual similarity guiding and replace the

L2 objective with the LPIPS [102] metric, see Sec. 4.4.



C. Additional Results

C.1. Choosing the Signal­to­Noise Ratio for High­Resolution Synthesis

KL-reg, w/o rescaling KL-reg, w/ rescaling VQ-reg, w/o rescaling

Figure 13. Illustrating the effect of latent space rescaling on convolutional sampling, here for semantic image synthesis on landscapes. See

Sec. 4.3.2 and Sec. C.1.

As discussed in Sec. 4.3.2, the signal-to-noise ratio induced by the variance of the latent space (i.e. Var(z)/σ2
t ) significantly

affects the results for convolutional sampling. For example, when training a LDM directly in the latent space of a KL-

regularized model (see Tab. 8), this ratio is very high, such that the model allocates a lot of semantic detail early on in the

reverse denoising process. In contrast, when rescaling the latent space by the component-wise standard deviation of the

latents as described in Sec. F, the SNR is descreased. We illustrate the effect on convolutional sampling for semantic image

synthesis in Fig. 13. Note that the VQ-regularized space has a variance close to 1, such that it does not have to be rescaled.

C.2. Full List of all First Stage Models

We provide a complete list of various autoenconding models trained on the OpenImages dataset in Tab. 8.

C.3. Text­to­Image Synthesis

In Fig. 14 we show additional samples from our best text-to-image model for user defined text prompts. For a detailed

description of the conditioning mechanism via cross-attention, cf . Sec D.2.1.

C.4. Layout­to­Image Synthesis

Here we provide the quantitative evaluation and additional samples for our layout-to-image models from Sec. 4.3.1. We

train a model on the COCO [4] and one on the OpenImages [48] dataset, which we subsequently additionally finetune on

COCO. Tab 9 shows the result. Our COCO model reaches the performance of recent state-of-the art models in layout-to-

image synthesis, when following their training and evaluation protocol [86]. When finetuning from the OpenImages model,

we surpass these works. Our OpenImages model surpasses the results of Jahn et al [36] by a margin of nearly 11 in terms of

FID. In Fig. 15 we show additional samples of the model finetuned on COCO.



f |Z| c R-FID ↓ R-IS ↑ PSNR ↑ PSIM ↓ SSIM ↑

16 VQGAN [23] 16384 256 4.98 – 19.9 ±3.4 1.83 ±0.42 0.51 ±0.18

16 VQGAN [23] 1024 256 7.94 – 19.4 ±3.3 1.98 ±0.43 0.50 ±0.18

8 DALL-E [64] 8192 - 32.01 – 22.8 ±2.1 1.95 ±0.51 0.73 ±0.13

32 16384 16 31.83 40.40 ±1.07 17.45 ±2.90 2.58 ±0.48 0.41 ±0.18

16 16384 8 5.15 144.55 ±3.74 20.83 ±3.61 1.73 ±0.43 0.54 ±0.18

8 16384 4 1.14 201.92 ±3.97 23.07 ±3.99 1.17 ±0.36 0.65 ±0.16

8 256 4 1.49 194.20 ±3.87 22.35 ±3.81 1.26 ±0.37 0.62 ±0.16

4 8192 3 0.58 224.78 ±5.35 27.43 ±4.26 0.53 ±0.21 0.82 ±0.10

4† 8192 3 1.06 221.94 ±4.58 25.21 ±4.17 0.72 ±0.26 0.76 ±0.12

4 256 3 0.47 223.81 ±4.58 26.43 ±4.22 0.62 ±0.24 0.80 ±0.11

2 2048 2 0.16 232.75 ±5.09 30.85 ±4.12 0.27 ±0.12 0.91 ±0.05

2 64 2 0.40 226.62 ±4.83 29.13 ±3.46 0.38 ±0.13 0.90 ±0.05

32 KL 64 2.04 189.53 ±3.68 22.27 ±3.93 1.41 ±0.40 0.61 ±0.17

32 KL 16 7.3 132.75 ±2.71 20.38 ±3.56 1.88 ±0.45 0.53 ±0.18

16 KL 16 0.87 210.31 ±3.97 24.08 ±4.22 1.07 ±0.36 0.68 ±0.15

16 KL 8 2.63 178.68 ±4.08 21.94 ±3.92 1.49 ±0.42 0.59 ±0.17

8 KL 4 0.90 209.90 ±4.92 24.19 ±4.19 1.02 ±0.35 0.69 ±0.15

4 KL 3 0.27 227.57 ±4.89 27.53 ±4.54 0.55 ±0.24 0.82 ±0.11

2 KL 2 0.086 232.66 ±5.16 32.47 ±4.19 0.20 ±0.09 0.93 ±0.04

Table 8. Complete autoencoder zoo trained on OpenImages, evaluated on ImageNet-Val. † denotes an attention-free autoencoder.

COCO256× 256 OpenImages 256× 256 OpenImages 512× 512

Method FID↓ FID↓ FID↓

LostGAN-V2 [84] 42.55 - -

OC-GAN [86] 41.65 - -

SPADE [60] 41.11 - -

VQGAN+T [36] 56.58 45.33 48.11

LDM-8 (100 steps, ours) 42.06† - -

LDM-4 (200 steps, ours) 40.91∗ 32.02 35.80

Table 9. Quantitative comparison of our layout-to-image models on the COCO [4] and OpenImages [48] datasets. †: Training from scratch

on COCO; ∗: Finetuning from OpenImages.

C.5. Class­Conditional Image Synthesis on ImageNet

Tab. 10 contains the results for our class-conditional LDM measured in FID and Inception score (IS). LDM-8 requires

significantly fewer parameters and compute requirements (see Tab. 18) to achieve very competitive performance. Similar

to previous work, we can further boost the performance by training a classifier on each noise scale and guiding with it,

see Sec. B. Unlike the pixel-based methods, this classifier is trained very cheaply in latent space. For additional qualitative

results, see Fig. 25 and Fig. 26.

C.6. Sample Quality vs. V100 Days (Continued from Sec. 4.1)

For the assessment of sample quality over the training progress in Sec. 4.1, we reported FID and IS scores as a function

of train steps. Another possibility is to report these metrics over the used resources in V100 days. Such an analysis is

additionally provided in Fig. 16, showing qualitatively similar results.

C.7. Super­Resolution

For better comparability between LDMs and diffusion models in pixel space, we extend our analysis from Tab. 4 by

comparing a diffusion model trained for the same number of steps and with a comparable number 1 of parameters to our

LDM. The results of this comparison are shown in the last two rows of Tab. 11 and demonstrate that LDM achieves better

performance while allowing for significantly faster sampling. A qualitative comparison is given in Fig. 19 which shows

random samples from both LDM and the diffusion model in pixel space.

1It is not possible to exactly match both architectures since the diffusion model operates in the pixel space



Text-to-Image Synthesis on LAION. 1.45B Model.

’A zombie in the ’An image of an animal ’An illustration of a ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:

style of Picasso’ half mouse half octopus’ slightly conscious neural network.’ squirrel eating a burger.’ chair that looks like an octopus.’ “I love generative models!”.’

Figure 14. More samples for user-defined text prompts from our big model for text-to-image synthesis, LDM-8 (KL), which was trained

on the LAION database. Samples generated with 200 DDIM steps and η = 1.0. We use unconditional guidance [31] with s = 10.0.

Method FID↓ IS↑ Precision↑ Recall↑ Nparams

SR3 [70] 11.30 - - - 625M -

ImageBART [21] 21.19 - - - 3.5B -

ImageBART [21] 7.44 - - - 3.5B 0.05 acc. rate∗

VQGAN+T [23] 17.04 70.6±1.8 - - 1.3B -

VQGAN+T [23] 5.88 304.8±3.6 - - 1.3B 0.05 acc. rate∗

BigGan-deep [3] 6.95 203.6±2.6 0.87 0.28 340M -

ADM [15] 10.94 100.98 0.69 0.63 554M 250 DDIM steps

ADM-G [15] 4.59 186.7 0.82 0.52 608M 250 DDIM steps

ADM-G,ADM-U [15] 3.85 221.72 0.84 0.53 n/a 2 × 250 DDIM steps

CDM [30] 4.88 158.71±2.26 - - n/a 2 × 100 DDIM steps

LDM-8 (ours) 17.41 72.92±2.6 0.65 0.62 395M 200 DDIM steps, 2.9M train steps, batch size 64

LDM-8-G (ours) 8.11 190.43±2.60 0.83 0.36 506M 200 DDIM steps, classifier scale 10, 2.9M train steps, batch size 64

LDM-8 (ours) 15.51 79.03±1.03 0.65 0.63 395M 200 DDIM steps, 4.8M train steps, batch size 64

LDM-8-G (ours) 7.76 209.52±4.24 0.84 0.35 506M 200 DDIM steps, classifier scale 10, 4.8M train steps, batch size 64

LDM-4 (ours) 10.56 103.49±1.24 0.71 0.62 400M 250 DDIM steps, 178K train steps, batch size 1200

LDM-4-G (ours) 3.95 178.22±2.43 0.81 0.55 400M 250 DDIM steps, unconditional guidance [31] scale 1.25, 178K train steps, batch size 1200

LDM-4-G (ours) 3.60 247.67±5.59 0.87 0.48 400M 250 DDIM steps, unconditional guidance [31] scale 1.5, 178K train steps, batch size 1200

Table 10. Comparison of a class-conditional ImageNet LDM with recent state-of-the-art methods for class-conditional image generation

on the ImageNet [12] dataset.∗: Classifier rejection sampling with the given rejection rate as proposed in [65].



layout-to-image synthesis on the COCO dataset

Figure 15. More samples from our best model for layout-to-image synthesis, LDM-4, which was trained on the OpenImages dataset and

finetuned on the COCO dataset. Samples generated with 100 DDIM steps and η = 0. Layouts are from the COCO validation set.

Figure 16. For completeness we also report the training progress of class-conditional LDMs on the ImageNet dataset for a fixed number

of 35 V100 days. Results obtained with 100 DDIM steps [81] and κ = 0. FIDs computed on 5000 samples for efficiency reasons.

C.7.1 LDM-BSR: General Purpose SR Model via Diverse Image Degradation

To evaluate generalization of our LDM-SR, we apply it both on synthetic LDM samples from a class-conditional ImageNet

model (Sec. 4.1) and images crawled from the internet. Interestingly, we observe that LDM-SR, trained only with a bicubicly

downsampled conditioning as in [70], does not generalize well to images which do not follow this pre-processing. Hence, to

obtain a superresolution model for a wide range of real world images, which can contain complex superpositions of camera



Method FID ↓ IS ↑ PSNR ↑ SSIM ↑

Image Regression [70] 15.2 121.1 27.9 0.801

SR3 [70] 5.2 180.1 26.4 0.762

LDM-4 (ours, 100 steps) 2.8†/4.8‡ 166.3 24.4±3.8 0.69±0.14

LDM-4 (ours, 50 steps, guiding) 4.4†/6.4‡ 153.7 25.8±3.7 0.74±0.12

LDM-4 (ours, 100 steps, guiding) 4.4†/6.4‡ 154.1 25.7±3.7 0.73±0.12

LDM-4 (ours, 100 steps, +15 ep.) 2.6† / 4.6‡ 169.76±5.03 24.4±3.8 0.69±0.14

Pixel-DM (100 steps, +15 ep.) 5.1† / 7.1‡ 163.06±4.67 24.1±3.3 0.59±0.12

Table 11. ×4 upscaling results on ImageNet-Val. (2562); †: FID features computed on validation split, ‡: FID features computed on train

split. We also include a pixel-space baseline that receives the same amount of compute as LDM-4. The last two rows received 15 epochs

of additional training compared to the former results.

bicubic LDM-SR LDM-BSR

Figure 17. LDM-BSR generalizes to arbitrary inputs and can be used as a general-purpose upsampler, upscaling samples from a class-

conditional LDM (image cf . Fig. 4) to 1024
2 resolution. In contrast, using a fixed degradation process (see Sec. 4.4) hinders generalization.

noise, compression artifacts, blurr and interpolations, we replace the bicubic downsampling operation in LDM-SR with the

degration pipeline from [101]. The BSR-degradation process is a degradation pipline which applies JPEG compressions

noise, camera sensor noise, different image interpolations for downsampling, Gaussian blur kernels and Gaussian noise in a

random order to an image. We found that using the bsr-degredation process with the original parameters as in [101] leads to

a very strong degradation process. Since a more moderate degradation process seemed apppropiate for our application, we

adapted the parameters of the bsr-degradation (our adapted degradation process can be found in our code base at https:

//github.com/CompVis/latent-diffusion). Fig. 17 illustrates the effectiveness of this approach by directly

comparing LDM-SR with LDM-BSR. The latter produces images much sharper than the models confined to a fixed pre-

processing, making it suitable for real-world applications. Further results of LDM-BSR are shown on LSUN-cows in Fig. 18.

https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/latent-diffusion


D. Implementation Details and Hyperparameters

D.1. Hyperparameters

We provide an overview of the hyperparameters of all trained LDM models in Tab. 12, Tab. 13, Tab. 14 and Tab. 15.

CelebA-HQ 256× 256 FFHQ 256× 256 LSUN-Churches 256× 256 LSUN-Bedrooms 256× 256

f 4 4 8 4

z-shape 64× 64× 3 64× 64× 3 - 64× 64× 3
|Z| 8192 8192 - 8192

Diffusion steps 1000 1000 1000 1000

Noise Schedule linear linear linear linear

Nparams 274M 274M 294M 274M

Channels 224 224 192 224

Depth 2 2 2 2

Channel Multiplier 1,2,3,4 1,2,3,4 1,2,2,4,4 1,2,3,4

Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8, 4 32, 16, 8

Head Channels 32 32 24 32

Batch Size 48 42 96 48

Iterations∗ 410k 635k 500k 1.9M

Learning Rate 9.6e-5 8.4e-5 5.e-5 9.6e-5

Table 12. Hyperparameters for the unconditional LDMs producing the numbers shown in Tab. 1. All models trained on a single NVIDIA

A100.

LDM-1 LDM-2 LDM-4 LDM-8 LDM-16 LDM-32

z-shape 256× 256× 3 128× 128× 2 64× 64× 3 32× 32× 4 16× 16× 8 88× 8× 32
|Z| - 2048 8192 16384 16384 16384

Diffusion steps 1000 1000 1000 1000 1000 1000

Noise Schedule linear linear linear linear linear linear

Model Size 396M 391M 391M 395M 395M 395M

Channels 192 192 192 256 256 256

Depth 2 2 2 2 2 2

Channel Multiplier 1,1,2,2,4,4 1,2,2,4,4 1,2,3,5 1,2,4 1,2,4 1,2,4

Number of Heads 1 1 1 1 1 1

Batch Size 7 9 40 64 112 112

Iterations 2M 2M 2M 2M 2M 2M

Learning Rate 4.9e-5 6.3e-5 8e-5 6.4e-5 4.5e-5 4.5e-5

Conditioning CA CA CA CA CA CA

CA-resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8 16, 8, 4 8, 4, 2

Embedding Dimension 512 512 512 512 512 512

Transformers Depth 1 1 1 1 1 1

Table 13. Hyperparameters for the conditional LDMs trained on the ImageNet dataset for the analysis in Sec. 4.1. All models trained on a

single NVIDIA A100.

D.2. Implementation Details

D.2.1 Implementations of τθ for conditional LDMs

For the experiments on text-to-image and layout-to-image (Sec. 4.3.1) synthesis, we implement the conditioner τθ as an

unmasked transformer which processes a tokenized version of the input y and produces an output ζ := τθ(y), where ζ ∈
R
M×dτ . More specifically, the transformer is implemented from N transformer blocks consisting of global self-attention

layers, layer-normalization and position-wise MLPs as follows2:

2adapted from https://github.com/lucidrains/x-transformers

https://github.com/lucidrains/x-transformers


LDM-1 LDM-2 LDM-4 LDM-8 LDM-16 LDM-32

z-shape 256× 256× 3 128× 128× 2 64× 64× 3 32× 32× 4 16× 16× 8 88× 8× 32
|Z| - 2048 8192 16384 16384 16384

Diffusion steps 1000 1000 1000 1000 1000 1000

Noise Schedule linear linear linear linear linear linear

Model Size 270M 265M 274M 258M 260M 258M

Channels 192 192 224 256 256 256

Depth 2 2 2 2 2 2

Channel Multiplier 1,1,2,2,4,4 1,2,2,4,4 1,2,3,4 1,2,4 1,2,4 1,2,4

Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8 16, 8, 4 8, 4, 2

Head Channels 32 32 32 32 32 32

Batch Size 9 11 48 96 128 128

Iterations∗ 500k 500k 500k 500k 500k 500k

Learning Rate 9e-5 1.1e-4 9.6e-5 9.6e-5 1.3e-4 1.3e-4

Table 14. Hyperparameters for the unconditional LDMs trained on the CelebA dataset for the analysis in Fig. 6. All models trained on a

single NVIDIA A100. ∗: All models are trained for 500k iterations. If converging earlier, we used the best checkpoint for assessing the

provided FID scores.

Task Text-to-Image Layout-to-Image Class-Label-to-Image Super Resolution Inpainting Semantic-Map-to-Image

Dataset LAION OpenImages COCO ImageNet ImageNet Places Landscapes

f 8 4 8 4 4 4 8

z-shape 32× 32× 4 64× 64× 3 32× 32× 4 64× 64× 3 64× 64× 3 64× 64× 3 32× 32× 4
|Z| - 8192 16384 8192 8192 8192 16384

Diffusion steps 1000 1000 1000 1000 1000 1000 1000

Noise Schedule linear linear linear linear linear linear linear

Model Size 1.45B 306M 345M 395M 169M 215M 215M

Channels 320 128 192 192 160 128 128

Depth 2 2 2 2 2 2 2

Channel Multiplier 1,2,4,4 1,2,3,4 1,2,4 1,2,3,5 1,2,2,4 1,4,8 1,4,8

Number of Heads 8 1 1 1 1 1 1

Dropout - - 0.1 - - - -

Batch Size 680 24 48 1200 64 128 48

Iterations 390K 4.4M 170K 178K 860K 360K 360K

Learning Rate 1.0e-4 4.8e-5 4.8e-5 1.0e-4 6.4e-5 1.0e-6 4.8e-5

Conditioning CA CA CA CA concat concat concat

(C)A-resolutions 32, 16, 8 32, 16, 8 32, 16, 8 32, 16, 8 - - -

Embedding Dimension 1280 512 512 512 - - -

Transformer Depth 1 3 2 1 - - -

Table 15. Hyperparameters for the conditional LDMs from Sec. 4. All models trained on a single NVIDIA A100 except for the inpainting

model which was trained on eight V100.

ζ ← TokEmb(y) + PosEmb(y) (18)

for i = 1, . . . , N :

ζ1 ← LayerNorm(ζ) (19)

ζ2 ← MultiHeadSelfAttention(ζ1) + ζ (20)

ζ3 ← LayerNorm(ζ2) (21)

ζ ← MLP(ζ3) + ζ2 (22)

ζ ← LayerNorm(ζ) (23)

(24)

With ζ available, the conditioning is mapped into the UNet via the cross-attention mechanism as depicted in Fig. 3. We

modify the “ablated UNet” [15] architecture and replace the self-attention layer with a shallow (unmasked) transformer

consisting of T blocks with alternating layers of (i) self-attention, (ii) a position-wise MLP and (iii) a cross-attention layer;



see Tab. 16. Note that without (ii) and (iii), this architecture is equivalent to the “ablated UNet”.

While it would be possible to increase the representational power of τθ by additionally conditioning on the time step t, we

do not pursue this choice as it reduces the speed of inference. We leave a more detailed analysis of this modification to future

work.

For the text-to-image model, we rely on a publicly available3 tokenizer [95]. The layout-to-image model discretizes the

spatial locations of the bounding boxes and encodes each box as a (l, b, c)-tuple, where l denotes the (discrete) top-left and b
the bottom-right position. Class information is contained in c.
See Tab. 17 for the hyperparameters of τθ and Tab. 13 for those of the UNet for both of the above tasks.

Note that the class-conditional model as described in Sec. 4.1 is also implemented via cross-attention, where τθ is a single

learnable embedding layer with a dimensionality of 512, mapping classes y to ζ ∈ R
1×512.

input R
h×w×c

LayerNorm R
h×w×c

Conv1x1 R
h×w×d·nh

Reshape R
h·w×d·nh

×T











SelfAttention

MLP

CrossAttention

R
h·w×d·nh

R
h·w×d·nh

R
h·w×d·nh

Reshape R
h×w×d·nh

Conv1x1 R
h×w×c

Table 16. Architecture of a transformer block as described in Sec. D.2.1, replacing the self-attention layer of the standard “ablated UNet”

architecture [15]. Here, nh denotes the number of attention heads and d the dimensionality per head.

Text-to-Image Layout-to-Image

seq-length 77 92

depth N 32 16

dim 1280 512

Table 17. Hyperparameters for the experiments with transformer encoders in Sec. 4.3.

D.2.2 Inpainting

For our experiments on image-inpainting in Sec. 4.5, we used the code of [85] to generate synthetic masks. We use a fixed

set of 2k validation and 30k testing samples from Places [104]. During training, we use random crops of size 256 × 256
and evaluate on crops of size 512× 512. This follows the training and testing protocol in [85] and reproduces their reported

metrics (see † in Tab. 7). We include additional qualitative results of LDM-4, w/ attn in Fig. 20 and of LDM-4, w/o attn, big,

w/ ft in Fig. 21.

D.3. Evaluation Details

This section provides additional details on evaluation for the experiments shown in Sec. 4.

D.3.1 Quantitative Results in Unconditional and Class-Conditional Image Synthesis

We follow common practice and estimate the statistics for calculating the FID-, Precision- and Recall-scores [28,49] shown in

Tab. 1 and 10 based on 50k samples from our models and the entire training set of each of the shown datasets. For calculating

FID scores we use the torch-fidelity package [58]. However, since different data processing pipelines might lead to

different results [62], we also evaluate our models with the script provided by Dhariwal and Nichol [15]. We find that results

3https://huggingface.co/transformers/model_doc/bert.html#berttokenizerfast

https://huggingface.co/transformers/model_doc/bert.html#berttokenizerfast


mainly coincide, except for the ImageNet and LSUN-Bedrooms datasets, where we notice slightly varying scores of 7.76

(torch-fidelity) vs. 7.77 (Nichol and Dhariwal) and 2.95 vs 3.0. For the future we emphasize the importance of a

unified procedure for sample quality assessment. Precision and Recall are also computed by using the script provided by

Nichol and Dhariwal.

D.3.2 Text-to-Image Synthesis

Following the evaluation protocol of [64] we compute FID and Inception Score for the Text-to-Image models from Tab. 2 by

comparing generated samples with 30000 samples from the validation set of the MS-COCO dataset [50]. FID and Inception

Scores are computed with torch-fidelity.

D.3.3 Layout-to-Image Synthesis

For assessing the sample quality of our Layout-to-Image models from Tab. 9 on the COCO dataset, we follow common

practice [36, 84, 86] and compute FID scores the 2048 unaugmented examples of the COCO Segmentation Challenge split.

To obtain better comparability, we use the exact same samples as in [36]. For the OpenImages dataset we similarly follow

their protocol and use 2048 center-cropped test images from the validation set.

D.3.4 Super Resolution

We evaluate the super-resolution models on ImageNet following the pipeline suggested in [70], i.e. images with a shorter

size less than 256 px are removed (both for training and evaluation). On ImageNet, the low-resolution images are produced

using bicubic interpolation with anti-aliasing. FIDs are evaluated using torch-fidelity [58], and we produce samples

on the validation split. For FID scores, we additionally compare to reference features computed on the train split, see Tab. 4

and Tab. 11.

D.3.5 Efficiency Analysis

For efficiency reasons we compute the sample quality metrics plotted in Fig. 5, 16 and 6 based on 5k samples. Therefore,

the results might vary from those shown in Tab. 1 and 10. All models have a comparable number of parameters as provided

in Tab. 13 and 14. We maximize the learning rates of the individual models such that they still train stably. Therefore, the

learning rates slightly vary between different runs cf . Tab. 13 and 14.

D.3.6 User Study

For the results of the user study presented in Tab. 5 we followed the protocoll of [70] and and use the 2-alternative force-choice

paradigm to assess human preference scores for two distinct tasks. In Task-1 subjects were shown a low resolution/masked

image between the corresponding ground truth high resolution/unmasked version and a synthesized image, which was gen-

erated by using the middle image as conditioning. For SuperResolution subjects were asked: ’Which of the two images is a

better high quality version of the low resolution image in the middle?’. For Inpainting we asked ’Which of the two images

contains more realistic inpainted regions of the image in the middle?’. In Task-2, humans were similarly shown the low-

res/masked version and asked for preference between two corresponding images generated by the two competing methods.

As in [70] humans viewed the images for 3 seconds before responding.



E. Computational Requirements

Method Generator Classifier Overall Inference Nparams FID↓ IS↑ Precision↑ Recall↑
Compute Compute Compute Throughput∗

LSUN Churches 2562

StyleGAN2 [41]† 64 - 64 - 59M 3.86 - - -

LDM-8 (ours, 100 steps, 410K) 18 - 18 6.80 256M 4.02 - 0.64 0.52

LSUN Bedrooms 2562

ADM [15]† (1000 steps) 232 - 232 0.03 552M 1.9 - 0.66 0.51

LDM-4 (ours, 200 steps, 1.9M) 60 - 55 1.07 274M 2.95 - 0.66 0.48

CelebA-HQ 2562

LDM-4 (ours, 500 steps, 410K) 14.4 - 14.4 0.43 274M 5.11 - 0.72 0.49

FFHQ 2562

StyleGAN2 [41] 32.13‡ - 32.13† - 59M 3.8 - - -

LDM-4 (ours, 200 steps, 635K) 26 - 26 1.07 274M 4.98 - 0.73 0.50

ImageNet 2562

VQGAN-f-4 (ours, first stage) 29 - 29 - 55M 0.58†† - - -

VQGAN-f-8 (ours, first stage) 66 - 66 - 68M 1.14†† - - -

BigGAN-deep [3]† 128-256 128-256 - 340M 6.95 203.6±2.6 0.87 0.28

ADM [15] (250 steps) † 916 - 916 0.12 554M 10.94 100.98 0.69 0.63

ADM-G [15] (25 steps) † 916 46 962 0.7 608M 5.58 - 0.81 0.49

ADM-G [15] (250 steps)† 916 46 962 0.07 608M 4.59 186.7 0.82 0.52

ADM-G,ADM-U [15] (250 steps)† 329 30 349 n/a n/a 3.85 221.72 0.84 0.53

LDM-8-G (ours, 100, 2.9M) 79 12 91 1.93 506M 8.11 190.4±2.6 0.83 0.36

LDM-8 (ours, 200 ddim steps 2.9M, batch size 64) 79 - 79 1.9 395M 17.41 72.92 0.65 0.62

LDM-4 (ours, 250 ddim steps 178K, batch size 1200) 271 - 271 0.7 400M 10.56 103.49±1.24 0.71 0.62

LDM-4-G (ours, 250 ddim steps 178K, batch size 1200, classifier-free guidance [31] scale 1.25) 271 - 271 0.4 400M 3.95 178.22±2.43 0.81 0.55

LDM-4-G (ours, 250 ddim steps 178K, batch size 1200, classifier-free guidance [31] scale 1.5) 271 - 271 0.4 400M 3.60 247.67±5.59 0.87 0.48

Table 18. Comparing compute requirements during training and inference throughput with state-of-the-art generative models. Compute

during training in V100-days, numbers of competing methods taken from [15] unless stated differently;∗: Throughput measured in sam-

ples/sec on a single NVIDIA A100;†: Numbers taken from [15] ;‡: Assumed to be trained on 25M train examples; ††: R-FID vs. ImageNet

validation set

In Tab 18 we provide a more detailed analysis on our used compute ressources and compare our best performing models

on the CelebA-HQ, FFHQ, LSUN and ImageNet datasets with the recent state of the art models by using their provided

numbers, cf . [15]. As they report their used compute in V100 days and we train all our models on a single NVIDIA A100

GPU, we convert the A100 days to V100 days by assuming a×2.2 speedup of A100 vs V100 [72]4. To assess sample quality,

we additionally report FID scores on the reported datasets. We closely reach the performance of state of the art methods as

StyleGAN2 [41] and ADM [15] while significantly reducing the required compute resources.

4This factor corresponds to the speedup of the A100 over the V100 for a U-Net, as defined in Fig. 1 in [72]



F. Details on Autoencoder Models

We train all our autoencoder models in an adversarial manner following [23], such that a patch-based discriminator Dψ

is optimized to differentiate original images from reconstructions D(E(x)). To avoid arbitrarily scaled latent spaces, we

regularize the latent z to be zero centered and obtain small variance by introducing an regularizing loss term Lreg .

We investigate two different regularization methods: (i) a low-weighted Kullback-Leibler-term between qE(z|x) =
N (z; Eµ, Eσ2) and a standard normal distribution N (z; 0, 1) as in a standard variational autoencoder [45, 67], and, (ii) regu-

larizing the latent space with a vector quantization layer by learning a codebook of |Z| different exemplars [93].

To obtain high-fidelity reconstructions we only use a very small regularization for both scenarios, i.e. we either weight the

KL term by a factor ∼ 10−6 or choose a high codebook dimensionality |Z|.
The full objective to train the autoencoding model (E ,D) reads:

LAutoencoder = min
E,D

max
ψ

(

Lrec(x,D(E(x)))− Ladv(D(E(x))) + logDψ(x) + Lreg(x; E ,D)
)

(25)

DM Training in Latent Space Note that for training diffusion models on the learned latent space, we again distinguish two

cases when learning p(z) or p(z|y) (Sec. 4.3): (i) For a KL-regularized latent space, we sample z = Eµ(x)+Eσ(x)·ε =: E(x),
where ε ∼ N (0, 1). When rescaling the latent, we estimate the component-wise variance

σ̂2 =
1

bchw

∑

b,c,h,w

(zb,c,h,w − µ̂)2

from the first batch in the data, where µ̂ = 1
bchw

∑

b,c,h,w zb,c,h,w. The output of E is scaled such that the rescaled latent has

unit standard deviation, i.e. z ← z
σ̂
= E(x)

σ̂
. (ii) For a VQ-regularized latent space, we extract z before the quantization layer

and absorb the quantization operation into the decoder, i.e. it can be interpreted as the first layer of D.

G. Limitations & Societal Impact

Limitations While LDMs significantly reduce computational requirements compared to pixel-based approaches, their se-

quential sampling process is still slower than that of GANs. Moreover, the use of LDMs can be questionable when high

precision is required: although the loss of image quality is very small in our f = 4 autoencoding models (see Fig. 1), their

reconstruction capability can become a bottleneck for tasks that require fine-grained accuracy in pixel space. We assume that

our superresolution models (Sec. 4.4) are already somewhat limited in this respect.

Societal Impact Generative models for media like imagery are a double-edged sword: On the one hand, they enable various

creative applications, and in particular approaches like ours that reduce the cost of training and inference have the potential

to facilitate access to this technology and democratize its exploration. On the other hand, it also means that it becomes easier

to create and disseminate manipulated data or spread misinformation and spam. In particular, the deliberate manipulation

of images (“deep fakes”) is a common problem in this context, and women in particular are disproportionately affected by

it [13, 24].

Generative models can also reveal their training data [5, 87], which is of great concern when the data contain sensitive or

personal information and were collected without explicit consent. However, the extent to which this also applies to DMs of

images is not yet fully understood.

Finally, deep learning modules tend to reproduce or exacerbate biases that are already present in the data [22, 37, 88].

While diffusion models achieve better coverage of the data distribution than e.g. GAN-based approaches, the extent to which

our two-stage approach that combines adversarial training and a likelihood-based objective misrepresents the data remains

an important research question.

For a more detailed discussion of the ethical considerations of deep generative models, see e.g. [13].

H. Additional Qualitative Results

Finally, we provide additional qualitative results for our landscapes model (Fig. 11, 22, 23 and 24), our class-conditional

ImageNet model (Fig. 25 - 26) and our unconditional models for the CelebA-HQ, FFHQ and LSUN datasets (Fig. 27 - 30).

Similar as for the inpainting model in Sec. 4.5 we also fine-tuned the semantic landscapes model from Sec. 4.3.2 directly on

5122 images and depict qualitative results in Fig. 11 and Fig. 22. For our those models trained on comparably small datasets,

we additionally show nearest neighbors in VGG [77] feature space for samples from our models in Fig. 31 - 33.



bicubic LDM-BSR

Figure 18. LDM-BSR generalizes to arbitrary inputs and can be used as a general-purpose upsampler, upscaling samples from the LSUN-

Cows dataset to 1024
2 resolution.



input GT Pixel Baseline #1 Pixel Baseline #2 LDM #1 LDM #2

Figure 19. Qualitative superresolution comparison of two random samples between LDM-SR and baseline-diffusionmodel in Pixelspace.

Evaluated on imagenet validation-set after same amount of training steps.



input GT LaMa [85] LDM #1 LDM #2 LDM #3

Figure 20. Qualitative results on image inpainting. In contrast to [85], our generative approach enables generation of multiple diverse

samples for a given input.



input result input result

Figure 21. More qualitative results on object removal as in Fig. 10.



Semantic Synthesis on Flickr-Landscapes [23] (5122 finetuning)

Figure 22. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 512
2 images.



Figure 23. A LDM trained on 256
2 resolution can generalize to larger resolution for spatially conditioned tasks such as semantic synthesis

of landscape images. See Sec. 4.3.2.



Semantic Synthesis on Flickr-Landscapes [23]

Figure 24. When provided a semantic map as conditioning, our LDMs generalize to substantially larger resolutions than those seen during

training. Although this model was trained on inputs of size 256
2 it can be used to create high-resolution samples as the ones shown here,

which are of resolution 1024× 384.



Random class conditional samples on the ImageNet dataset

Figure 25. Random samples from LDM-4 trained on the ImageNet dataset. Sampled with classifier-free guidance [31] scale s = 5.0 and

200 DDIM steps with η = 1..



Random class conditional samples on the ImageNet dataset

Figure 26. Random samples from LDM-4 trained on the ImageNet dataset. Sampled with classifier-free guidance [31] scale s = 3.0 and

200 DDIM steps with η = 1..



Random samples on the CelebA-HQ dataset

Figure 27. Random samples of our best performing model LDM-4 on the CelebA-HQ dataset. Sampled with 500 DDIM steps and η = 0

(FID = 5.15).



Random samples on the FFHQ dataset

Figure 28. Random samples of our best performing model LDM-4 on the FFHQ dataset. Sampled with 200 DDIM steps and η = 1 (FID

= 4.98).



Random samples on the LSUN-Churches dataset

Figure 29. Random samples of our best performing model LDM-8 on the LSUN-Churches dataset. Sampled with 200 DDIM steps and

η = 0 (FID = 4.48).



Random samples on the LSUN-Bedrooms dataset

Figure 30. Random samples of our best performing model LDM-4 on the LSUN-Bedrooms dataset. Sampled with 200 DDIM steps and

η = 1 (FID = 2.95).



Nearest Neighbors on the CelebA-HQ dataset

Figure 31. Nearest neighbors of our best CelebA-HQ model, computed in the feature space of a VGG-16 [77]. The leftmost sample is

from our model. The remaining samples in each row are its 10 nearest neighbors.



Nearest Neighbors on the FFHQ dataset

Figure 32. Nearest neighbors of our best FFHQ model, computed in the feature space of a VGG-16 [77]. The leftmost sample is from our

model. The remaining samples in each row are its 10 nearest neighbors.



Nearest Neighbors on the LSUN-Churches dataset

Figure 33. Nearest neighbors of our best LSUN-Churches model, computed in the feature space of a VGG-16 [77]. The leftmost sample

is from our model. The remaining samples in each row are its 10 nearest neighbors.
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