
Supplementary Material for Bending Graphs: Hierarchical Shape Matching
using Gated Optimal Transport

This supplementary material explains further details of
the implementation, adds some ablation studies, and pro-
vides some complementary experiments with qualitative re-
sults to support the paper.

1. Implementation details
Here are further details which were not included in the

experiment section of the paper.

• dcut: 7

• Feature size of local graph: 64

• Feature size of shape graph: 64

• Num. of Gated Feature Propagation: 2

• Loss weights:

– First 30 epochs: γD = 1, γM = 0, γR = 1

– After 30 epochs: γD = 0.1, γM = 1, γR = 1

Coarse-to-Fine Dense Matching We implement a simple
algorithm based on functional maps to populate our match-
ing to all mesh vertices densely. We provide 200 coarse
matches as corresponding landmarks and create Wave Ker-
nel Signature [1] of size 35 to find fine correspondences on
all 6890 vertices.

2. Domain Transfer
To demonstrate the generalization ability of our network,

we used the same model trained on SURREAL [4] dataset
in section 4.3 to test on the TOSCA [3] horse class. The re-
sults are shown on Figure 1 and table 1. The results suggest
the strong domain transfer capability of our learned model
to unseen shapes.

3. Ablation Studies
3.1. Number of GOT and GFP

The proposed GOT consists of a Sinkhorn optimal trans-
port layer followed by a Gated Feature Propagation (GFP)
(See section 3.3). This involves two hyper-parameters, the

coarse error (⇂) fine error (⇂)

horse 0.1988 0.0146
cat 0.2141 0.0223

Table 1. To evaluate the domain adaptability, we use the model
trained with SURREAL dataset to test on TOSCA dataset. By
comparing this result to table 1 in the main paper, we find that our
method is able to achieve equivalent results compared to the model
trained on SMAL dataset with animal shapes.

number of message passing layers and the number of the
total GOT operation. We ablate the effect on these two fac-
tors following the same setup of the ablation studies we pro-
vided in the main paper (Sec. 4.5). The results are shown
on table 2 and figure 3

By comparing #2 #4, it can be seen that the number of
GFP does not linearly influence the result. Without GFP
(#1), the patch features are unaware of the local manifold,
thus only focusing on matching similar features, resulting
in a reasonable bijection rate and high error. With adequate
GFP to enforce the regularity of the adjacent features, the
network can achieve the best bijection rate and error. How-
ever, when the propagation is performed in several hops,
the patch features are bound too widely to the local geom-
etry and cannot provide a correct and distinctive matching.
The same phenomenon is observed in the number of GOT
operations. By comparing #2, #5, and #6, we can observe
that the more GOT operations, the lower the system’s per-
formance becomes.

By comparing #3 and #5, it can be seen that using two
GOT operations with 2 GFPs is more effective than having
a single GOT with 4 GFPs. Note that these two settings are
not identical. The former uses different confidence values
on each GOT operation, while the latter uses the same con-
fidence value to do 4 GFPs. Re-estimating the confidence
values through Sinkhorn algorithm allows more flexible fea-
ture propagation, and hence #5 has a better performance
than #3. In our network design and the problem setup, the
optimized configuration is with one GOT with 2 GFPs (#2).
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Figure 1. Results trained on SURREAL [4] and tested on Tosca [3]. In this experiment, we show the generalizability of the pipeline when
trained on human shapes and tested on animal shapes. a) target shape. b) coarse matches c) source shape with the predicted correspondences
d) ground-truth correspondences, e) normalized L2 error map.

N. GOT N. GFP bij. rate (↾) err. (⇂)

#1 0 0 52.75 14.11
#2 1 2 64.70 8.63
#3 1 4 39.78 10.50
#4 1 8 36.78 10.99
#5 2 2 45.78 9.59
#6 3 2 36.60 11.31

Table 2. The ablation study on the number of gated optimal trans-
port operations and the number of gated feature propagation lay-
ers. As proven by bijectivity rate and shortest path error, the study
#2 with a single GOT and two layers of GFP performs the best.

3.2. Effect of GFP

To study the effect of the GFP module on matching, we
do an ablation on matching results before and after GFP.
Here we train our network with one GOT and 2 GFPs and
show the matching results of the first Sinkhorn versus the
final Sinkhorn. Figure 2 shows the results of coarse match-
ing on the Faust dataset. In Table 3 we also compare coarse
and fine geodesic errors with the outputs of each Sinkhorn
layer. As visualized, the matching results after the GFP has
lower error and less outliars.

coarse error (⇂) fine error (⇂)

Before GFP 0.1315 0.0229
After GFP 0.2896 0.0253

Table 3. We show the effect of GFP during evaluation on FAUST
dataset by comparing the matching error before and after the
GFP module. Both results are calculated from the output of the
Sinkhorn algorithm.
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Figure 2. To show the effectiveness of our GFP module, we visualize correspondences before and after the GFP. Here a model is trained
on SURREAL [4] and during evaluation on FAUST [2], we visualize the results from the first and final Sinkhorn. a) Correspondence map
of target shape. b) Predicted correspondences from the first Sinkhorn (before GFP). c) Predicted correspondences from the final Sinkhorn
(after the GFP).



(a) (b) (c) (d) (e) (f) (g)

Figure 3. We show the visual difference of the ablation study on the number of GFP layers (corresponding to #1 #2 and #3 on table 2. The
human models from left to right are (a) The target shape map (b) The coarse matching result of model #1, (c) the coarse matching result of
model #2, (d) the coarse matching result of model #3, (e) the dense matching result of model #2, (f) the ground truth dense matching result
and (g) normalized L2 error map of model #2.
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