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1. Appendix
Here we report additional information to support the

main manuscript. In what follows, we will refer to fig-
ures, tables, sections, and equations from the manuscript
by prepending ”M-”. We start by providing a detailed net-
work overview in Sec.1.1. We then show a derivation for
the number of FLOPS required to compute the Spline Con-
volution in [2] for a single node in Sec.1.2. We finally list
the licenses of the datasets used in this submission in Sec.
1.3.

1.1. Network Details

We use two network architectures in this work, one for
object recognition (Sec. M-5.2) and one for object de-
tection (Sec. M-5.3). Both networks consist of convolu-
tional blocks, each containing a SplineConv [2], defined by
the number of output channels Mout and kernel size k, an
ELU activation function, and a batch norm. As shown in
Figure M-2, max graph pooling layers after the fifth and
seventh convolution, as well as skip connections after the
fourth and fifth convolution, are used. Also, a fully con-
nected layer maps the extracted feature maps to the net-
work outputs. The recognition network has convolutions
with kernel size k = 2 and output channels M i

out =
(1, 8, 16, 16, 16, 32, 32, 32). The convolutions in the detec-
tion network have a much larger kernel size k = 8 and more
output channels M i

out = (1, 16, 32, 32, 32, 128, 128, 128).

1.2. Spline Convolutions Complexity

In this work, we make heavy use of Spline Convolu-
tions [2]. Compared to standard GNN layers which only ag-
gregate features over layers, Spline Convolutions also take
into account the spatial arrangement of these neighbors and
thus produce richer features. Here we will give a summary
of spline convolutions and refer the reader to [2] for more
details. Given nodes i with features f(i) we define convolu-
tion kernels gn, with n = 1, ...,Mout the index of the output

*these authors contributed equally

feature. They act as

(gn ∗ f)(i) = 1

|N(i)|

Min∑
l=1

∑
j∈N(i)

fl(j)gn,l(u(i, j)) (1)

Here fl(j) is the input feature with index j, N(i) counts
the number of neighbors of node i, and u(i, j) are pseudo
coordinates. These are defined as the normalized distance
vector between nodes i and j.

The function g is expanded as

gn,l(u) =
∑
p∈P

wp,l,nB
m
p (u) (2)

Here P denotes an index set, which is a regular grid in 3 di-
mensions. It has two elements in each direction, resulting in
23 = 8 elements (tuples). For each coordinate tuple a learn-
able weight wp,l,n is stored and multiplied by a B-Spline
basis Bm

p (u) in three dimensions. Each B-Spline basis is
computed by forming the product of three splines as

Bm
p (u) =

3∏
s=1

Nm
ps,s(us), (3)

i.e. one for each dimension. Here m is the degree of the
B-Spline, and in this work we use m = 3. Each function
Nm

ps,s(us) can thus be written Nm
ps,s(us) =

∑m−1
j=0 aju

j
s.

1.2.1 FLOPS Computation

Here we count the FLOPS necessary. In what follows we
define Ni = |N(i)| and Np = |P | and will proceed in a
series of steps. To evaluate Eq. 1 we first compute u for all
neighbors and dimensions, resulting in:

FLOPS(u(i, j)) = Nid (4)

then we compute the FLOPS to evaluate Bm
p (u) as

FLOPS(Bm
p (u)) = 2mNid+Ni(d− 1) (5)
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For the first term we make use of Horner’s method [3],
which states the optimal number of additions and multipli-
cations for a polynomial of degree m as 2m. For the second
term we count the FLOPS to compute the product. Each
operation needs to be repeated for each neighbor. Next we
compute gn,l(u) as the sum of products over elements of P ,
input features and output features.

FLOPS(gn,l(u)) = (2Np − 1)MoutMinNi (6)

Finally we aggregate these terms, first over neighbors and
then over input features

FLOPS

Min∑
l=1

∑
j∈N(i)

fl(j)gn,l(u(i, j)

 =

(2Ni − 1)MoutMin + (Min − 1)Mout

Where the first term counts products and summation over
neighbors, and the second counts summation over input fea-
tures. Finally, we divide all output features by Ni, adding
additional Mout FLOPS. We thus have

Ctot =Nid+ 2mNid+Ni(d− 1)

+ (2Np − 1)MoutMinNi

+ (2Ni − 1)MoutMin

+ (Min − 1)Mout +Mout

=NiMoutMin(1 + 2Np) +Ni(2d+ 2md− 1).

1.3. Licenses

We use the Prophesee Gen1 dataset [1] under
the “PROPHESEE GEN1 AUTOMOTIVE DETECTION
DATASET LICENSE TERMS AND CONDITIONS”
found at the URL https://www.prophesee.ai/
2020/01/24/prophesee-gen1-automotive-
detection-dataset/. N-Caltech101 [4] is used un-
der the “Creative Commons Attribution 4.0 license” and
downloaded at https://www.garrickorchard.
com/datasets/n-caltech101. Finally, the N-Cars
dataset [5] is also released by Prophesee under https:
//www.prophesee.ai/2018/03/13/dataset-
n-cars/.
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