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1. Facial Age Estimation Datasets
To assess the performance of the proposed algorithm in facial age estimation, we use seven existing datasets: MORPH II

[32], CLAP2015 [12], FG-NET [21], CACD [7], UTK [40], Adience [23] and IMDB-WIKI [33]. MORPH II has the
Institutional Review Board approval. The other datasets contain facial images obtained by web crawling, and they have been
made available for academic research purpose only. Among the images in the datasets, any will be removed if there are delete
requests from the original owners. Except for the CACD and IMDB-WIKI datasets, which contain celebrity name labels,
there are no name labels. We use the seven datasets only for evaluating the ordinal regression performance of the proposed
algorithm. Details about the datasets and experimental settings are as follows.

MORPH II [32]: This is the most widely used dataset for age estimation, containing about 55,000 facial images of 13,617
subjects in the age range [16, 77]. It provides gender and race labels as well. Using these labels, various evaluation protocols
have been proposed. We employ the four evaluation settings A, B, C, and D [22, 26], as described in Section 2.1 in this
supplemental document.

CLAP2015 [12]: It is for apparent age estimation. The apparent age of each image was rated by at least 10 annotators, and
the mean rating was set to be the ground-truth. CLAP2015 also provides the standard deviation of ratings for each image. It
contains 4,691 facial images in total, which are split into 2,476 for training, 1,136 for validation, and 1,079 for testing. The
age range is [3, 85].

FG-NET [21]: It provides 1,002 color or grayscale images of 82 people in the age range from 0 to 69. As in [25,38], we use
the leave-one-person-out (LOPO) protocol.

CACD [7]: It contains about 160K images of 2,000 celebrities, which are divided into three subsets by celebrities: 1,800
for training, 80 for validation, and 120 for testing. As in [33–35], we train the MWR algorithm using the train set and the
validation set, respectively. The age range is [14, 62].

UTK [40]: It provides about 20,000 facial images in the age range [0, 116]. For fair comparison, we employ the same
evaluation protocol as in [2, 16] — 13,147 for training, 3,287 for testing.

Adience [23]: It is for age group estimation. It contains 26,580 facial images of 2,284 subjects, which are grouped into
8 classes: 0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, and over 60-year-olds. As in [11, 24, 27, 28], we adopt the 5-fold
subject-exclusive (SE) cross-validation evaluation setting.

IMDB-WIKI [33]: It contains about 500,000 celebrity images, crawled from IMDB and Wikipeida. It has been used to
pre-train recent age estimators [22, 25, 26, 30, 33, 36, 38]. We also pre-train the proposed ρ-regressors using 175,000 clean
images from IMDB-WIKI, unless specified otherwise.



2. More Experimental Results
2.1. Performance Comparison on MORPH II

Four evaluation settings [22, 26] are adopted for the performance comparison on MORPH II [32].

• Setting A: 5,492 images of Caucasians are sampled and then randomly split into train and test sets with ratio 8:2.

• Setting B: About 21K images of Caucasians and Africans are randomly chosen so that the ratio between Caucasians
and Africans is 1:1 and that between females and males is 1:3. Then, it is divided into three subsets (S1, S2, S3). The
training and testing are repeated twice — 1) training on S1, testing on S2+S3, and 2) training on S2, testing on S1+S3.

• Setting C: The whole dataset is randomly divided into five folds, satisfying the constraint that images of the same
person should belong to only one fold. Then, the 5-fold cross-validation is performed.

• Setting D: The whole dataset is randomly divided into five folds without any restriction. Then, the 5-fold cross-
validation is performed.

Table S-1 provides more comparison results with conventional algorithms on MORPH II.

Table S-1. Extended table of the performance comparison on the MORPH II dataset.

Setting A Setting B Setting C Setting D

MAE CS(%) MAE CS(%) MAE CS(%) MAE CS(%)

RED-SVM [4] - - - - - - 6.49 49.0
OHRank [5] - - - - - - 6.07 56.3
KPLS [14] - - 4.18 - - - - -
CPLF [39] - - 3.63 - - - - -
Huerta et al. [19] - - - - 3.88 - - -
OR-CNN [29] - - - - - - 3.27 73.0
Tan et el. [41] - - 3.03 - - - - -
Ranking-CNN [8] - - - - - - 2.96 85.0
DEX [33] 2.68 - - - - - - -
DMTL [18] - - - - 3.00 85.3 - -
CMT [3] - - - - 2.91 - - -
DRFs [34] 2.91 82.9 2.98 - - - 2.17 91.3
AGEn [36] 2.52 85.0 2.70 83.0 - - - -
MV [30] - - - - 2.79 - 2.16 -
C3AE [6] - - - - - - 2.75 -
BridgeNet [25] 2.38 91.0 2.63 86.0 - - - -
AVDL [38] 2.37 - 2.53 - - - 1.94 -
OL [26] 2.41 91.7 2.75 88.2 2.68 88.8 2.22 93.3
DRC-ORID [22] 2.26 93.8 2.51 89.7 2.58 89.5 2.16 93.5

Proposed 2.13 94.2 2.53 90.4 2.53 90.5 2.00 95.0



2.2. Global vs. Local Regression

Table S-2 compares the performances of global and local ρ-regressors on various facial age estimation datasets. In all
tests, the local ρ-regressors improve the performances by refining the global regression results, for they are capable of
learning diverse patterns more effectively. For example, in MORPH II setting D, the local regression lowers MAE by 7.4%.
Moreover, in MORPH II setting C, which is the most challenging task, the local regression improves the MAE performance
by 3.1%. Also, on the train split in CACD, it improves the MAE performance meaningfully by 7.4%.

Table S-2. Comparison of global and local regression on facial age estimation datasets.

MORPH II CLAP2015 FG-NET CACD UTK Adience
(MAE/CS) (MAE/ε-error) (MAE/CS) (MAE) (MAE) (MAE/Accuracy)

Setting A Setting B Setting C Setting D Validation Test LOPO Train Validation Coral SE

Global ρ-regressor 2.24/93.5 2.55/90.1 2.61/89.5 2.16/93.0 3.12/0.27 2.82/0.26 2.24/90.6 4.76 5.75 4.49 0.46/62.2
Local ρ-regressors 2.13/94.2 2.53/90.4 2.53/90.5 2.00/95.0 2.95/0.26 2.77/0.25 2.23/91.1 4.41 5.68 4.37 0.45/62.6

2.3. Performance According to K

Figure S-1 plots MAE according to the number K of NNs for predicting an initial estimate θ̂0(x). The impacts of K are
negligible, as long as the initial estimation is conducted, i.e. K ≥ 1. In the case of K = 0, we set θ̂0(x) to the midpoint of
the entire range. In such a case, more than 10 iterations are often required for the convergence, and the MAE performance is
degraded by about 0.007 as compared with the default K = 5.
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Figure S-1. Plot of MAE according to the number K of NNs on setting A of MORPH II.

2.4. Storage Costs

Table S-3 lists memory requirements for reference features. This additional memory is negligible in most practical appli-
cations. Especially, on MORPH II, only 469KB of additional memory is required for MWR using five local ρ-regressors.

Table S-3. Memory requirements for reference features for the test split of CLAP2015 and setting D of MORPH II.

Global ρ-regressor Local ρ-regressors

CLAP2015 (Test) 255KB 601KB
MORPH II (D) 225KB 469KB

2.5. Model Complexity

Table S-4 compares the complexity of the proposed ρ-regressors with those of conventional algorithms. We see that the
ρ-regressors have relatively lightweight architecture.

Table S-4. Comparison of model complexities.

DEX [33] MV [30] OL [26] Global ρ-regressor Local ρ-regressors

Parameters (M) 138 138 15.51 15.77 78.85



2.6. More Comparison with State-of-the-Arts

Table S-5 compares the proposed MWR for facial age estimation with DLDL-v2 [13] and DHAA [37] in terms of MAE.
Except for settings B and D of MORPH II, MWR clearly outperforms these existing techniques. Note that DLDL-v2 uses
MS-Celeb-1M [15], which is about 20 times bigger than IMDB-WIKI [33], for pre-training. Also, DHAA employs facial
keypoints additionally for training. Nevertheless, without using a bigger dataset or extra information, the proposed algorithm
provides competitive results. Especially, on FG-NET, the proposed algorithm outperforms DHAA by a significant MAE
margin of 0.37.

Table S-5. MAE comparison on settings A, B, and D of MORPH II, the validation split of CLAP2015, and FG-NET.

Algorithm MORPH II (A) MORPH II (B) MORPH II (D) CLAP2015 (Val) FG-NET

DLDL-v2 [13] - - 1.97 3.14 -
DHAA [37] 2.49 2.49 1.91 3.05 2.60

Proposed 2.13 2.53 2.00 2.95 2.23

Next, Table S-6 compares the proposed MWR with PML [10]. For a fair comparison, as done in [10], we adopt ResNet34
[17] as the encoder. The proposed algorithm provides much better results than PML in both cases.

Table S-6. MAE comparison on settings A and D of MORPH II using the same backbone of ResNet34. IMDB-WIKI pre-training is not
performed.

Algorithm MORPH II (A) MORPH II (D)

PML [10] 2.31 2.15

Proposed 2.20 1.97

2.7. Visualization of Feature Spaces

Figure S-2 visualizes the feature spaces of MORPH II and CACD. In both datasets, feature vectors are roughly aligned
according to the ranks (ages).
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Figure S-2. t-SNE visualization of the feature spaces of MORPH II and CACD.



2.8. Examples of Selected References in Facial Age Estimation

Figure S-3 shows examples of reference pairs selected by the min γ and max γ schemes in facial age estimation. In
Figure S-3(a), most faces look straight ahead without occlusion. Hence, the min γ scheme provides more accurate estimates.
In contrast, in Figure S-3(b), images have overexposure or poor illumination, degrading age estimation performances.
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Figure S-3. Example of reference pairs selected by the (a) min γ and (b) max γ schemes on the CLAP2015 test split during the global
regression. The numbers above or below the images indicate the corresponding ages.



3. Impacts of Applications
The proposed MWR is applicable to general ordinal regression tasks. In this paper, we apply the MWR to facial age

estimation, historical color image classification, and aesthetic score regression. Especially, the proposed facial age estimator
has diverse potential uses. For example, it can be used for forensic search [1] and social media [33]. Also, it can facilitate
age-based customization of advertisements. However, as well as positive impacts, it has negative ones. For instance, age
estimation errors lead to undesirable results, such as recommending unsuitable content. Moreover, although age information
itself is not enough for identifying an individual, intermediate features of the proposed algorithm can be utilized as ancillary
information in facial recognition systems [20], inducing serious problems such as unwanted surveillance and invasion of
privacy [31]. Hence, ethical considerations should be made before the use of the proposed algorithm. We recommend using
the proposed age estimator for research only until standard rules on the usage of facial analysis research are established by
the governments [9] and international research bodies.
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