Crowd Counting in the Frequency Domain

Supplementary Material

A. Supplementary ablation study

Here we supplement the ablation study executed on two different network structures, which shows the chf loss is not
network-specific. The test data set is UCF-QNREF [1] and the result is shown in Table 1. From Table 1, we see that the
performance of the chf loss is comparatively steady on different backbone networks.

BL [3] NoiseCC [4] DM count [6] GL [5] ChfL (ours)
MAE MSE | MAE MSE | MAE MSE | MAE MSE | MAE MSE
VGGI9[3] | 88.8 1548 | 858 150.6 | 85.6 1483 | 84.3 1475 | 80.3 137.6
CSRNet [2] | 107.5 1843 | 96.5 163.3 | 103.6 180.6 | 92.0 1657 | 83.0 139.8

Table 1. Comparison between performance steadiness of different losses on two different network structures.

B. Proofs

In this section, we prove the properties/propositions in the paper. We try to keep the proofs in order of their appearance in
the main paper, but due to their dependence, there will be some small adjustment.

B.1. Notations and Notes
B.1.1 Notations

* dz, dt, dx, dt mean the Lebesgue measure.

B.1.2 Notes

Some general knowledge used in the proofs.
* set theory: the cardinality of set, countable set, uncountable set, countable cartesian product.

* measure theory: measure (o-additivity and continuity of measures), o-algebra, generated o-algebra, Dynkin’s -\
theorem (7r-system and A-system).

* real & complex analysis: open set in R™, Borel sets in R”, Cauchy-Schwarz inequality, the structure of rational and real
numbers, calculus, roots of unity, Euler’s formula.

* integral: linearity of integrals to measures, Fubini theorem, dominated convergence theorem, monotone convergence
theorem.

* probability: Gaussian distribution, expectation.

B.2. Proofs of properties

Here we provide proofs for Properties 2, 3, 4, and 1.

B.2.1 Proof of Property 2

Proof of Property 2 : Note that |¢!(**)| = 1 and the density map is a finite measure, hence
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is always integrable for any density map m. Then this property can be easily derived by the linearity of the integral to the

finite measure. See the following derivation.
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B.2.2 Proof of Property 3

Beflore proving Property 3, we first prove two helpful lemmas.
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Proof of Lemma 1 : Suppose y > 0, Use integral by parts twice, we have
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Note that the first equality holds by Fubini theorem (e~*Y is always positive, which satisfies the condition of using Fubini
theorem). Eq. 13 shows that e~*¥ sin z is integrable on (0, T") x (0, +00), therefore Fubini theorem can be used to the integral

of e~*¥ sin z on domain (0, +-00) x (0,7"). Then by Fubini theorem we have
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Taking the limit and using dominated convergence theorem to have
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Lemma 2 (one-dimension inversion formula) For a finite measure i defined on the measure space (R, Br), suppose there
is an interval [a, b] where a < b and p({a}) = p({b}) = 0, then we have

1 b .
u((a,b)) TIRO%/[TT]/ ou(t)e ™ dadt, (16)

where ,,(t) means the characteristic function of p.

Proof of Lemma 2 : This result is a typical result for the characteristic function of the distribution. To prove it for the finite
measure, all we need are to ensure that each part in the original proof hold for the finite measure. Now we begin with
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Since 4 is a finite measure, [~T,T] x [a,b] has finite Lebesgue measure, and |¢!*(¥=%)| = 1, then !*(¥=*) is absolutely

integrable on range {(x,y,t)|(z,y,t) € [a,b] x R x [T, T|} w.rt. the product measure u(y) X dx x dt, and consequently
integrable. Therefore Fubini theorem can be used, and we have
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Note that the (22) holds because the first part in the parentheses is 0 by the oddity of the integrand. By integration by
substitution and Lemma 1, we have
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On the other hand,
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By Lemma [, we have | fow Silz‘z dz — g| < € for any w > P where €, P are some positive numbers. Thus, this
w

means | [V S22 dz| < e+ Tifw > P. Whenw < P, | ;" 522 gz < [7|02] ¢ < [1d> = P. Finally we get
sup,, | [y 222 dz| < max{% + ¢, P} = C. Therefore, we have
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[~T.T] t a

The constant function 4C' is also integrable on domain R w.r.t. the finite measure ;(y). Hence, dominated convergence
theorem can be used on (22) to obtain
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Eq. 36 holds by substituting (27) into the integral. The final equality holds by the assumption p({a}) = u({b}) = 0 in the
Lemma. |

Next we are ready to prove Property 3.

Proof of Property 3 : Let int(A) = (a1,b1) X (a2,b2) which is the interior of A, since m(0A) = 0, we have m(A) =
m(int(A)). We also define out(A) = A° = R? — [ay, b1] X [ag, be]. Similar discussions to the proof of Lemma 2 show the



Fubini theorem can be used. Therefore we have
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The last equality holds by applying the result in (22) to both the integral w.r.t. £; and ¢5. Again, similar discussions for the
proof of Lemma 2 show that (see Eq. 27)
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(27)? y € int(A)
212y € {a1,b1},y2 € (az, bo)
= y1 € {a1,b1},y2 € {az, ba} . 45)
212 yy € {az,ba}, y1 € (az,bs)
0 y € out(A)

We see that the result on the boundary of A is complex, that is why we add the assumption m(9A) = 0 to rule out the
complex boundary situation. Finally, similar discussions to the proof of Lemma 2 also show that dominated convergence
theorem can be used, and resuming from (43) we have
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Remark of Lemma 1, Lemma 2, Property 3, and chf loss : Note that in Lemma 1, Lemma 2, and Property 3 we use a
limit formula in the integral, i.e., we take limy_, o rather than the direct Lebesgue integral on the whole integral space R or
R2. That is because those direct integrals on the whole space do not exist. A function f is Lebesgue integrable means that the



positive part f*’s integral is finite and the negative part f~’s integral is finite, and then [ f = [ f+— [ f~.If f is integrable,
then the limit formula integral coincides with the direct integral. But in our case, those funcions are actually not integrable on

the whole space. For instances, in Lemma 1, 22 is not Lebesgue integrable on [0, +00), and limp_, | o fo

ST g exists

but f0+°° % dx does not exist. This is also the case in Lemma 2 and Property 3.
But if the function f is non-negative or non-positive, the limit formula integral and the direct Lebesgue integral are always
the same by the monotone convergence theorem. And this is the case that we define our chf loss, i.e.,

lent(mg, my) = / ‘Sﬁmg (t) — Pmy (t)|dt = Tlim |90mg (t) — Pmyp (t)|dt. (51)
R? —too J-1,1)2

B.2.3 Proof of Property 4
We first prove one lemma before proving Property 4.

Lemma 3 If m is a discrete density map or a density map by convolving a discrete density map with some Gaussian kernel,
then [o, ||x||2 dm(x) is finite.

Proof of Lemma 3 : According to the definition of the discrete density map (see Definition 2), if m is a discrete density map,
suppose {x; }7_; is all the singletons where m distributes its measure on, then

[ Il dmx) = S m(Exaplll < +ox. 52

=1
If X = (X1, Xs) ~ N(p, 2), then

Ex~n[[[X]2] = Exon[Lx <1 X2] + Exon [Lx),>11X]]2] (33)
< Exen[Tx)p<1] + Ex~n[I1X][3] (54)
= Exn[Lx)s<1] + Exen[X7] + Exon [X3] (55
= Ex~n[Lx)o<1] + B + B11 + p3 + Tao (56)
< +o0. (57)

Therefore, if m = > 1| m(pu® )N (), 2 ), i.e., the density map obtained by convolving a discrete density map with
some Gaussian kernel, then by the linearity of integral to finite measures, we have

/R el dimto) = 32 0 B 1] < o (58)
[ |

Next we prove Property 4.
Proof of Property 4 : Let h be any non-zero two-dimensional vector in R?, ¢ be the characteristic function, then

(ot h) = pn(®)] = | [ (@) 00 ) 59)
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where C' = [, ||x]l2 dm(x) < +oo0 by Lemma 3. Eq. 60 holds by the absolute integral inequality; Eq. 61 holds by
|ei(tX)| = 1; Eq. 62 holds by the property |¢!* — 1| < |z|; Eq. 63 holds by the Cauchy—Schwarz inequality. [ |

Remark of Property 4: More generally, if m is a finite measure defined on (R™, B~ ) where Bg~ is all the Borel sets, then
its characteristic function ¢,,, is uniformly continuous. This is because |¢!™*) — 1| < 2, and m is a finite measure means
Jz2 2 dm(x) is finite, then dominated convergence theorem can be used to obtain

lim [ [P — 1] dm(x) = / lim e — 1| dm(x) = 0. (64)
h—0 R2 R2 h—0
Combining with (63), we have
|@m (t + ) — @, (t)] < / X _ 1] dm(x) — 0 as h — 0. (65)
Rz

This shows that ¢,,, is uniformly continuous.

B.2.4 Proof of Property 1

We first prove 3 lemmas before proving Property 1.

Lemma 4 Suppose (i is a finite measure defined on n-dimension measure space (R™, Bgn) where Bgrn means all the Borel
sets, then there are only countable slices with non-zero measures w.r.t. |, i.e.,

Vi = {eifu(R™ x {ei} x R"™Y) # 0} (66)
is a countable set for 1 < i < n. Here, R means not taking any cartesian product, i.e., R® x A = A x R* = A.

Proof of Lemma 4 : We prove this lemma by contradiction for ¢ = 1. The other cases are the same. Since

+oo
Vi = ferlutlent x R £ 0} = J{erlafer} <R > 2, a
k=1

then if V; is not countable, there must be some & s.t. Vi(k) = {c1|u({c:} x R*"1) > %} has infinite elements — the
cardinality of the union of countably many finite sets is countably infinite, and it can not go up to uncountably infinite; Hence

there must be some infinite sets. We take countably many elements from V; (k) and use the o-additivity to obtain

“+o0 “+o0
; 3 . . 1
n(UJ ey xR = 3 u{dd} x R 2 oo = = oo, (68)
j=1 j=1 k
which contradicts the truth p is a finite measure. |

Lemma 5 Suppose A C R is a countable set, then there is a countable subset B C R — A s.t. {zla <z <b A = € B}is
an infinite set for any a < b and a,b € R.

Proof of Lemma 5 : For a real number r, we define set Q(r) = Q + r where Q is all the rational numbers. Then, for two
different real numbers 1 and 79, there are only two possibilities:

L Q(r1) = Q(r2);
2. Q(r1) NQ(rz) = 0.



Suppose Q(r1) N Q(r2) # 0, then there exists rational numbers ¢; and g2 s.t. ¢ + 1 = g2 + 72, which means ro —ry =
¢1 — g2 = g3 is a rational number. Then for any element g + 72 € Q(r2), we can find ¢ + g3 + 1 € Q(r1) that equals
q + ro. Hence, Q(r3) C Q(r1), and similar discussions lead to Q(r1) C Q(r2). Therefore, either Q(r1) = Q(r2) or
Q(r1) NQ(r2) = 0.

Since Q(r) is a countable set for any r € R and we have

R = U s, (69)
se{Q(r)|rer}

then {Q(r)|r € R} is uncountably infinite. Otherwise, R is the union of countably many countable sets, which means R
is a countable set, contradicting the truth R is an uncountable set. On the other hand, A is countable subset of R, and we
have proved that any pair in {Q(r)|r € R} has empty intersection, therefore there must be some real number r* satisfying
ANQ(r*) = 0. Then B = Q(r*) is the desired set satisfying all the conditions in the lemma. |

Lemma 6 Suppose 1 and o are two finite measures defined on n-dimension measure space (R™, Bgn) where Bgrn means
all the Borel sets, then there is a w-system S who is a countable set satisfying

e VAeS A=T[,(a;,b;) and p1(0A) = pa(0A) =0,
b CT(S) = B]Rn,
where A means the boundary of A and o(S) means the generated c-algebra of S.

Proof of Lemma 6 : By Lemma 4, we know V! = {c;|u1 (R™! x {¢;} x R"™%) # 0} and V? = {c;|pa(R™! x {c;} ¥
]R”*i) # 0} are both countable sets for 1 < ¢ < n, then V; = Vi1 U ‘/;2 is countable set for 1 < ¢ < n. Therefore, by Lemma
5, it is not hard to find a countable set P, C R with

I. {zla <z <b A x € P;}is an infinite set for any a < b and a,b € R;
2.Vz € Pypn(R7E x {z; = 2} x R"7Y) = po (R x {z; =2} x R"™%) =0

foreach7in1l < ¢ < n. Let
n

S = {[[(ai, b)las, b; € P; for 1 < i <n} (70)

i=1
be the set of some special open boxes, then we claim S is the desired family of sets. Firstly, since P; is countable for
all 1 < 4 < n, the cardinality of S is the cardinality of the cartesian product of finite countable sets, which is countable.

Secondly, we have

[T(ai, b0) 0] [ (ei di) = [ (air0:) 0 (e, da). (71)
i=1 i=1 i=1
Then, the intersection of two open boxes in S still falls into S, which shows S is a w-system. Thirdly, by the second property
of P;, we have VA € S, p1(0A) = pua(0A) = 0. Fourthly, suppose U is non-empty open set, then for each x € U, we can
find an open ball B(z,r) C U. Further we can find an open box A[x] € S such that x € A C B(x,r) C U by the first
property of P;. Then U = J,; Alz]. But Az] € S and S is a countable set, it shows U is actually the union of countably
many A[x]. Then, any open set can be represented by the countable union of the sets in S. Define 7 as the family of all the
open sets in R™, then the result shows

o(8) D o(T) = Bgn. (72)
On the other hand, all the sets in S are originally open sets, which means

o(S) C o(T) = Bgn. (73)
Finally we get 0(S) = Bgn. [ |

Now, we can prove Property 1.



Proof of Property 1 : If m; = mey, it is obvious that ¢,,, = ¢, according the definition of characteristic functions (see
Definition 4). We now prove the other side.

Suppose ©m, = ¥m, a.e., then by the continuity of characteristic functions (see Remark of Property 4 in the supplemen-
tary material), ©,,, = ¢m,. By Lemma 6, we can find a family of sets S satisfying:

1. S is a countable set;
2. §is a m-system;
3. VA€ S, A=T1",(ai,b;) and m1(DA) = my(DA) = 0;
4. 0(S) = Bge.
According to the 3rd attribute of S and Property 3 (the inversion formula), we have
VA €S, mi(A) =ma(A). (74)

Now, we define the family of sets R as

Then we prove R is a A-system. Firstly, since ¢,,, = ©m,, then m1(R?) = ¢,,, (0) = ¢,,,(0) = ma(R?), which shows
the total space R? € R. Secondly, if A, B € R and A C B, then m;(B — A) = my(B) — m1(A) = ma(B) — ma(A) =
ma(B — A) by o-additivity of measures. Therefore B — A € R. Thirdly, if {4;}; % € R and A; C A;;; fori > 1, then
by the continuity of measures we have my (Y A;) = lim;_, 4o m1(A;) = limy_s 400 ma(A;) = ma(U;- A;), which
means szolo A; € R. In summary, S is a A-system.

Since S C R and S is a w-system (the 2nd attribute of S), then by Dynkin’s 7-\ theorem, we have o(S) C R. By the 4th
attribute of S, it means Bgz C R. But according to the definition of R, R C Bgz. Therefore, we have Bgz = R, which
means mq(A) = ma(A) for any A € Bge. [ |

B.3. Proofs of Propositions

B.3.1 Proof of Proposition 1

Proof of Proposition 1 : Suppose there are two density maps m; and ms, and

lchf(ml,mz) =0. (76)
Then it means
[ om0 = pma(0lde =0, )
]RZ
Let

and {m};of is a series of decreasing positive real numbers converging to 0, then we have

+oo
{t e R?[£(t) > 0} = [ J{t € R*|f(t) > r;}. (79)

i=1
If L({f(t) > r;}) # 0, where L is the Lebesgue measure, then

0< L{f(t) >r})*xr = / ridt (80)
f(t)>r

< / f(t)dt < [ f(t)dt =0, (8D
f(t)>r; R2
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Figure 1. The union of two boxes can be written as the union of disjoint boxes with vertex coordinates in the same vertex coordinate set of
the original two boxes.

1 — |

-—

Figure 2. The incremental split. Suppose 1, 2, and 3 are the split disjoint boxes before, n + 1 is the new coming box. The method first
removes the intersection between n - 1 (in this example n = 3, for clearness we use n + 1 rather than 4 to mark the new coming box) and
k (k =1,2,3) from n + 1 (the blue boxes in the right pattern). Second, the method splits the remaining part of n + 1 into disjoint boxes
(the red boxes in the right pattern). The strategy can always work for finite n.

which is a contradiction. Hence L£({f(t) > r;}) = 0 for all 7, then by the continuity of the Lebesgue measure,

“+o00
LI{f(t) > 0}) = U{f ) > ri}) =lim L({f(t) > r:}) = 0. (82)
This means
4107n1(t):<)0m2(t) a.e. (83)

Then by Property 1, m; = mo.
Hence, we have [}, ;(m1, m2) = 0 — my = mo, which means the chf loss is not underdetermined. |

B.3.2 Proof of Proposition 2

To prove Proposition 2, we first prove one lemma.

Lemma 7 For a set A who is the union of countably many open boxes =1 (agl) b(l)) (aé ), b(i)) suppose the first vertex
setis Vi = {a(l b(l °0 and the second vertex set is Vo = {a bg 1220, Then A = U+°°A where Aj, N A;, = 0 if
j1 # jo. And for all j, Aj has the form of boxes: [(c1 , d(J))] [(cgj), dgj))}, where [ and )| mean the boundary can be either

open “(,)” or closed “[,]”. According these choices, there are all 2* = 16 types of boxes. Besides, cgj),dgj) € Vi and
9.4 v,

Proof of Lemma 7 : We use proof by induction. If A = UZ 1(a1 ,b(i)) X (aéi), béi)), then we can always split A into
disjoint boxes satisfying the conditions in this lemma. There are several cases for the union of two boxes, we do not discuss



them one by one. The assertion is always true, and Fig. 1 shows one case. Other cases are easily checked. Inductively,
if A = U (a; () b(i)) x (ag () bgi)) can be split into disjoint boxes with vertexes’s coordinates satisfying conditions in
the lemma, then for A = U"'H( (1i), bgi)), we can first split U;;l(a(li), b(li)) into those boxes, and then do the split for the
(n + 1)-th box as shown in Fig. 2.

The induction shows the lemma holds for all the cases that A is the union of finite boxes. If A = ;;of (agi), bgi)) X
(ag), b(i)), let Cy, = Uf:l(agi)7 bgi)) X (ag), bg)), then A = (J25 Cy, and C} C Cryq. If we use the incremental split
method shown in Fig. 2, then we can write each C}, as the union of a family Cj, of disjoint boxes and C, C Cj+1. Then

+oo
A= U U B, , B; are boxes. (84)
k=1 B;€Cy

Since C;, C Ci41 and each Cy, is a finite family of disjoint boxes whose vertexes satisfy the conditions in the lemma, A is
actually the union of countably many disjoint boxes whose vertexes satisfy the conditions in the lemma. This completes the
proof. |

Proof of Proposition 2 : Since m, and m,, are both finite measures on (R?, Bg2), by Lemma 6 and its proof, there is a

countable family of sets S satisfying:

1. VA € S, A = [T2_,(ai, b;) where my({a1} x R) = m,({a1} x R) = my({b1} x R) = m,({b1} x R) = 0 and
mg(R x {as}) = mp(R x {az}) = mg(R x {ba}) = m,(R x {ba}) = 0, therefore m,(0A) = m,(0A) = 0.

2. for any open set U, U = | J;-7 A; where A; € S for each i.

Use Property 3 and the 1st attribute of S, for any set A € S, we can get

|mg(A) —mp(A (85)
T%OO @ / . / —itx) dxdt — lim (zi)Q /{MP /A Prm,, (£)e X dxdt (86)
Y / / [P, (6) = @m,, (£)]e ) dxdt (87)
T—+too (21)% Ji_7.112 JA
:TﬁJroo 27r /TT]Q/ @mg @,np(t)]e*i“»@ dxt (88)
_Tgrgmm / . A \mm—som,,<t>1e*i<t=x> dxdt (39)
— i / . / |y () — o, (8)] dxdt (90)
=TgTwWA/[_T7T]2 [P, (t) = @m, (t)] dtdx on
TETOO e Py (8) = o, (£)] dtdx 92)
gamq — ©m, (t)| dtdx (93)
— (2n /A Lenp (mgsmy) dx = (2m)2lep (g, ) £(A), ©4)

(88) holds by the continuity of the absolute value function; (89) holds by the absolute integral inequality; (90) holds by the
truth |ei<t*x> | = 1; (91) holds by Fubini theorem (the integrand is non-negative measurable function, hence Fubini theorem
can be used); (92) and (93) hold by monotone convergence theorem.

For any open set U, by the 2nd attribute of S, U = ;;of A; where A; € S for each 7. Then by Lemma 7 and the first
attribute of S, U is actually the union of countably many disjoint boxes B; whose boundary has zero measure under both



(J) d(J)

mg and m,. Suppose cgj ), dgj ) are first dimension’s coordinates of B s vertexes, and c; are second dimension’s

coordinates of B;’s vertexes, then the interior of B; is int(B;) = (¢ ), d(lj )) x (e (23 ), dgj )). Since it has zero measure
boundary under both my and m,,, we have mg (int(B;)) = my(B;) and my(int(B;)) = m,(B;). Finally, for any open set
U, we have

|mg(U) - mp(U)‘ = my(U Bj) - mp(U Bj) (95)

+o00 +o0o

= > mg(Bj) =Y my(B;) (96)
+o00

= | D_lmy(By) = my(By)] 97)
+o00o +oo

< Z Img(Bj) — myp(B;)| = Z Img(int(B;)) — my(int(B;))| (98)
" "

<Y (27) Pleng(mg, my) L(int(B;)) 99)
j=1

+oo
= (2m)leng (mg,my) 3 L(B;) (100)
= (271) 2Ly (mg, mp) L(U). (101)

(96) holds by the o-additivity of measures; (97) holds by the limit law of convergence series; (99) holds by (85-94); (100)
holds by the truth that all the boxes have zero-measure boundary under Lebesgue measure. (101) again holds by the o-
additivity of measures.

]

B.3.3 Proof of Proposition 3

Proof of Proposition 3 : Convolving the discrete dot map with a uniform isotropic Gaussian kernel will get the density map

T

m=> N(u;), (102)
j=1
where
a2 0
¥y = [0 02] . (103)
Then by Property 2, we have
o(t,t)

Pt Z@N(p],z) Zexp{ iy, t) = —5—"} (104)

Let D(a) = [~a,a]®> — B(0,r) is a region in R?, then according to the definition of 7, for non-trivial box A with



zero-measure boundary, we have

[m(A) = im(A)] = | lim_ o m(t) dxdt — lim e 2 (t) dxdt| (105)
= | tin 6% o (4) dxdt (106)
a % JD(a)
— . —i(t, x)
aEI—ir-loc/A G2 /D(a)e m(t) dtdx (107)
., -
, 1 a?(t,t)
= | m_ / o / Z explilu;, 6) — T5} | dbdx (108)
1 t) | | _
—GETOOA (%)2/ e } ;exp{l<uj—x,t>} dtdx (109)
, 1 o2(t,t) | |— ,
< _— 2 o
_GETOOA(2W)2 /D(a)exp{ 5 } ;|exp{1<u] x,t>}| dtdx (110)
: 1 o?(t,t)
GETOOAW/D(@ exp{—T}*Tdtdx (111)
TL(A) . o2 (t,t)
CoE e M e (112)
TL(A) a?(t,t)
= —— Y dt 11
(2m)? / B(0,r) e 2 pd (13
TL(A) QW*GXP{ﬁ}
= G = 2 (114)
TL(A)exp =o’r?
_ T )QWE 7 (115)

(105) holds by Property 2; (107) holds by Fubini theorem; (109) holds by the absolute integral inequality; (111) holds by
the truth |exp{i(ps; — x, t)}| = 1; (113) holds by monotone convergence theorem; (114) holds by calculating the integral in
the polar system.

Finally, rearrange the term, we have

(116)
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