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1. Head2Head Aligner Learning Details

In the training stage of the Head2Head Aligner, the target

image IT and the source image set IS are all sampled from

the same identity. We would expect the output animated

portrait IA of our model to be the same as IT , thus the whole

training procedure is based on frame reconstruction. The

loss functions are as follows:

Pixel-wise Reconstruction Loss. The reconstruction loss

in the first stage L1

L1
encourages the pixel-wise similarity

between the reenactment output IR and the target image IT
via L1 loss:

L1

L1
= λL1 ∥IT − IA∥1 . (1)

where λrec is the loss weight.

Perceptual Loss. We utilize the perceptual loss to mini-

mize the semantic discrepancy between the animated por-

trait IA and the target image IT . The feature matching

loss is used on a pre-trained VGG-19 network, a pre-trained

ResNet with ArcFace [3] Eid, and the discriminator DA:

L1

per =

K
∑

k=1

Lk
∑

l=1

λk
l

∥

∥φk
l (IT )− φk

l (IA)
∥

∥

1
, (2)

where λk
l balances the terms, φk

l represents the activation of

layer l. K = 3 represents the three networks repectively.

Identity Loss. Moreover, to further enhance the ability of

identity preservation, we leverage an additional identity loss

to minimize the identity gap between the generated output

and the target:

Lid = λid(1− cos (Eid(IT ), Eid(IA))). (3)

where λid is the loss weight, cos denotes the cosine distance

of identity embeddings.

Adversarial Loss. The discriminator DA is imposed to

make the animated portrait IA looks indistinguishable from
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the target image IT . The training losses are defined as fol-

lows:

LDA

adv = −E[h(DA(IT ))]− E[h(−DA(IA))]. (4)

LGA

adv = −E[DA(IA)], (5)

where h(x) = min(0,−1 + x) is a hinge function used to

regularize the discriminator [1, 6].

2. Head2Scene Blender Details

We jointly train the Semantic-guided Exemplar Warping

module and the Blending UNet via the loss functions below,

expecting the sequential two jobs to facilitate each other.

Perceptual Loss. Reconstruct training is also leveraged to

minimize the difference between the ultimate blending out-

put IB and the target image IT by minimizing the percep-

tual loss.

L2

per =

L1
∑

l=1

λ1

l

∥

∥φ1

l (IB)− φ1

l (IT )
∥

∥

1
. (6)

here λ1

l balance the terms layer-wise, φ1

l represents the ac-

tivation of layer l in the pre-trained VGG-19 as illustrated

in Eq. 2.

Reconstruction Loss. Note that the above feature matching

loss excels in capturing fine details, while missing the low

frequency image content. This could result in inaccurate

colors. Consequently, the L1 loss is also applied for color

consistency:

L2

L1
= λ1 ∥IB − IT ∥1 . (7)

Cycle Loss: In order to guarantee that the warped head-

color/inpainting exemplars could learn a meaningful corre-

spondence matrix, we introduce the cycle consistent loss.

Lc = λc ∥IT→A→T − IT ∥1 , (8)

where IT→A→T is the exemplar after cycled warpping,

and IkT→A→T (u) =
∑

v∈Mk

A

softmaxv(Γ
k(u, v)/τ) ·

1



IT→A(v), u ∈ Mk
T . Besides, the additional target image

I ′T coming from different image compared to IA is also uti-

lized to ensure the meaningful of warped exemplar:

Lc′ = λc ∥IT ′→A→T ′ − IT ∥1 . (9)

Adversarial Loss. We utilize another discriminator DB to

distinguish the blending outputs and the real samples from

ground truth, with head mask MH
A and inpainting mask M I

A

concatenated as conditions for further improving the fidelity

of our blending outputs. The adversarial objectives are op-

timized by hinge loss:

LDB

adv = −E[h(DB(IT ⊙MH
A ⊙M I

A))]

− E[h(−DB(IB ⊙MH
A ⊙M I

A))].
(10)

LB
adv = −E[DB(IB ⊙MH

A ⊙M I
A)]. (11)

where ⊙ denotes the concatenation along the dimensional-

ity of channel.

3. Experimental Details

In this section, we describe the data collection and the

experimental details, i.e., evaluation metrics, competitors

and implementation details.

3.1. Data collection

In terms of Head2Head Aligner, We re-download the

1080P videos with the urls provided by the VoxCeleb2

dataset [8] from YouTube. The frames are aligned by de-

tected landmarks and processed to 512× 512. Compared

with previous studies [4,15], a larger cropping window size

is used. Under such a setting, we manage to collect over-

all 28,367 videos with 5,478 different identities, which is

much less than the original training set of 145,569 videos

with 5,994 different identities in [4, 15]. Besides, totally

805 videos with 86 different identities are gathered as the

test set.

3.2. Implementation Details.

The portrait encoder Epor is ResNeXt-50 [14], the pose

and expression encoder are both constructed by the Mo-

bileNetV2 [11]. The size of the latent embedding, i.e. d1,

d2, d3 and d4, are 512, 512, 256 and 256 respectively. The

MLP module that transforms them into AdaIN parameters

is a 2-layer ReLU perceptron with spectral normalization,

where the output of intermediate layer is 768. The gen-

erator is borrowed from [4]. We add upsampling residual

blocks after the last layer to generate the reenacted image

with 512 × 512 resolution. The first module is trained for

roughly three weeks with batch size to be 6 on six 32G Tesla

V100 GPUs.

As for the Head2Scene Blender, we use a VGG-19 for

feature extraction. The Blending UNet is a seven-layer deep

residual U-type network. The training image size is 512 ×
512 and two 48G RTX8000 GPUs is used to train the model

for 5 days.

For both models, Adam [9] optimizer is used with β1 =
0.9 and β2 = 0.999, the imbalanced learning rate for gen-

erator and discriminator is set to be 1e-4 and 4e-4 respec-

tively. Spectral normalization is applied to all operators in

the system for stabilizing the adversarial training.

4. More Studies on Head2Head Aligner

This section is the supplementary materials for more

quantitative and qualitative reenactment comparison under

different settings:

One-shot meta-learning evaluation. Fig. 1 is the supple-

mentary qualitative results for cross-id animated portraits

in one-shot meta-learning setting. Significant artifacts ex-

hibited in FOMM and Siarohin et al [13]; our method can

generate the animated portraits with higher identity similar-

ity and pose consistency, besides, the elaborated emotions

(such as happiness in 1st, 4th, and 8th row of Fig. 1) are

also well animated.

Impact of K-shot and fine-tuning. Quantitative results

of increasing the K-shot number with subject-specific fine-

tuning or a meta-learned model are shown in Fig. 2. Qual-

itative impact of fine-tuning is illustrated in Fig. 3, where

better identity preservation is obtained compared to the ani-

mated portrait from the meta-learned model, while the pose

error is increased for the fine-tuned model overfits the one-

shot source. Then we increase the K-shot number, as de-

picted in Fig. 4, the identity similarity and pose consistency

are further improved.

5. More Studies on Head2Scene Blender

This section is the supplementary materials for the dis-

cussion of 1) the memory-saving of our semantic-guided

warped exemplar module, 2) skin color alignment and 3)

inpainting performance in the blending network.

Semantic-guided Exemplar Warping. To verify the

mechanism of our proposed calculation-reducing method,

we present the semantic-specific contribution that the tar-

get image made in the correlation matrix. Specially,

the accumulated attention distribution, denoting for pixels

in source image with semantic label k, is computed via
∑

v∈Mk

T

softmaxv(Γ
k(u, v)/τ)(u ∈ Mk

A), and the qual-

itative results are exhibited in Fig. 5. Obviously, it demon-

strates that the pixels in the target image with different se-

mantic label almost has no contribution in correspondence

matrix to that in the source image. Thus the correspondence

between pixels from source and target image with different

semantic label is redundant. Following our method, roughly

averaged 9G GPU memory usage is saved in 512×512

training setting.
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Figure 1. Qualitative cross-id animated portraits of one-shot meta-learned model. 1st row: source image for one-shot, 2nd row: pose image

from same video but different frame, rows 3 through 6: animated result from FOMM, Siarohin et al [12], LPD and ours. For a vivid show,

our animated portraits are re-cropped following LPD.

Skin Color Alignment. For an effective comparison, we

overlay the animated portrait on our head swapping result,

and using the target head as reference. The qualitative re-

sults of skin color alignment with different method on vox-

celeb2 test dataset is illustrated in Fig. 6, where the re-

markable performance advantage on the wild image is de-

picted. Our method outperforms deepfacelab, SCGAN and

PSGAN with more similar skin color to target image, while

the haircolor is also aligned and the background remains un-

changed. We attribute the superior to that, the skin color ex-

emplar in our method is directly gained from the weighted

contribution of the target image, while deepfacelab directly

aligns the averaged statistic of the source image to that of

the target image; besides, PSGAN and SCGAN learn the

implicit skin color information from the inter-feature cor-

respondence and spatially invariant 1D style-code respec-

tively.

Performance of Inpainting. As the missing pixels are af-

fected by the surroundings, for a fair comparison, we ex-

cavate neck and background around the head from our head

swapping results and take them as input for inpainting, mak-

ing facial skin color consistent with the skin color. Since the

source code of reference-guided competitors ( LOA [16]

and TransFill [17]) are not released publicly, we send the

testing data to authors for the compared result respectively.

Qualitative comparison results are shown in Fig.7.

6. More head swapping results

Additional comparison results with other methods on

VoxCeleb2 test set are shown in Fig. 8-22.
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Figure 2. Quantitative result of increasing the K-shot number with subject-specific fine-tuning or a meta-learned model. Meta denotes

the meta-learned model, ft600 indicates the fine-tuned model under 600 iterations. The transparent area around the dotted and solid lines

represents the variance.
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Figure 3. Qualitative cross-id animated portraits of one-shot ft600 model, the layout is the same as in Fig. 1.
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Figure 4. Qualitative cross-id animated portraits of 32-shot ft600 model, the layout is the same as in Fig. 1.

source skin nose right eye up lip low lip

reference left eye left eye left brow hair output

Figure 5. The accumulated attention distribution for diverse semantic label, it shows an intuitive phenomenon: the highlighted regions

correspond to semantic label blow the sub figure, and the remain regions are pitch-dark.
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Figure 6. Qualitative comparsion of facial skin color alignment with different method on voxceleb2 test dataset, best viewed in color.
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Figure 7. Reference-guided inpainting comparison.
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Figure 8. Additional comparison results with other methods on VoxCeleb2 test set. The top left image is one of the 32 source images. The

remaining images in the 1st row are the pose images. The 2nd line plots the state-of-the-art face swapping results [2] by replacing the face

in target image with that in source reenactment. The 3rd line shows the head swapping result of deepfacelab [10]. And the last line shows

our head swapping results. Best viewed in color.
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Figure 9. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 10. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 11. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 12. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 13. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 14. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 15. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 16. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 17. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 18. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 19. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 20. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 21. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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Figure 22. Additional comparison results with other methods on VoxCeleb2 test set, the layout is the same as in Fig. 8.
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