Appendices

In this supplementary material, we provide details omit-
ted in the main text. Additionally, we release our code
at https://github.com/chanhee- luke /M-
Track.
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» Appendix D: Additional experiments

A. More Related Work

Due to the space constraint, we only include the most
related works in the main text. Here, we add some extra
related works to show recent trends in VLN.

Auxiliary information in VLN. M-TRACK can be viewed
as an auxiliary information to the agent. A variety of aux-
iliary information has indeed been explored to improve the
VLN models [2-5,19,20,23,25,31,38,40,41,43]. Several
prior works proposed to build a semantic map that encodes
the spatial semantic information to bridge the gap between

instructions and visual observations [2, 4, 23, 25]. Other
studies suggested a topological map that memorizes previ-
ous actions and locations to facilitate planning [5, 31, 38].

M-TRACK is different from them by its simplicity, func-
tionality, and compatibility — it is completely detached
from VLN models and thus model-agnostic.

Data Augmentation in VLN. A number of prior studies
investigate data augmentation to increase generalizability
in unseen environments. One stream of works focuses on
generating synthetic language instructions [7, 12,22,28,39].
E.T. [28] constructs synthetic instructions using the ex-
pert path planner in ALFRED. Speaker-Follower [7] gener-
ates human-like textual instructions based on a VLN model
trained on ground-truth routes. The other stream considers
augmenting visual observations. Most of these works in-
clude surrounding views to enlarge an agent’s field of view
and thus enhance its navigation ability [4, 8, |1, 15,27,35].
In line with these studies, we augment visual observations
using panoramic views with different angles and headings.

Learning Strategies in VLN. Several studies train VLN
models with imitation learning [1,17,21,28,32,33,40] while
some other works apply reinforcement learning [20,26,41].
To balance exploration and exploitation in navigation, some
recent works leverage both imitation learning and reinforce-
ment learning [ 1, 13, 14, 19,36, 44]. Following the recent
studies, M-TRACK exploits both of them and shows notable
improvement on ALFRED.

Visual Input. There has been significant recent progress
in learning visual representations of views. Several stud-

ies take image features encoded by ResNet [10] as visual
input [1,7,32,44]. VLNOBERT [22] take as input ob-
ject features from Faster R-CNN [29] to encode objects’
semantic information. Some other studies leverage both
image and object features to learn better visual represen-
tations [11, 13]. Recently, several papers use a pre-trained
segmentation model (e.g., Mask R-CNN [9]) to obtain more
accurate object information [15,25,28,33,35,42]. Follow-
ing the recent trend in VLN, M-TRACK exploits Mask R-
CNN to detect objects for milestone checking and encode
their visual representations to facilitate interaction tasks.

B. M-TRACK Implementation Details
B.1. Milestone Builder

To estimate an upper bound of M-TRACK, we first build
a ground-truth dataset using ground-truth tags derived from
the ALFRED [32] expert demonstrations. The ALFRED
expert demonstrations are encoded in Planning Domain
Definition Language (PDDL) [24] rules. PDDL annotations
include task-specific goal conditions for each low-level in-
struction. Each low-level instruction in PDDL language is
defined by (d, i, p), where d = (action, argument) is a discrete
action tuple containing the description of the action and its
argument (object), i is the index of the low-level instruction,
p = (action, location/ObjectID) is a planner action which is an
action tuple directly applicable to the simulator. We use the
discrete action tuple to tag the low-level instruction with the
ground-truth object labels. For example, “Go to the trash
can on the far side of the kitchen”, is labeled with the dis-
crete action (GotoLocation, trashcan), based on which we au-
tomatically tag the instruction as (O, O, O, B-Nav, I-Nav, O, O,
0,0, 0, 0, 0). We apply BIO tagging format' to turn the ob-
ject labels into tags. Every ALFRED low-level instruction
has annotated labels, enabling us to build the ground-truth
milestone training data easily. After tagging the ALFRED
training and validation data with the ground truth object la-
bels in this way, we train a BERT-CREF [0, 34] tagger on the
training data to predict the milestone tags in the instruction.
We choose BERT to utilize its powerful context encoding
capability and add a CRF [18] layer on top of BERT to bet-
ter model the interdependence of tag predictions. BERT-
CRF is trained end to end with training data generated from
the training split of ALFRED and validated with validation
set generated with validation seen and unseen annotations
for ALFRED. The model that has the highest F1 on the val-
idation set is chosen.

During the main model (e.g., VLNOBERT-L + M-
TRACK ) execution, BERT-CRF outputs tags for a given
low-level instruction. For instance, in the instruction, “Turn

IB- prefix indicates the tag is the beginning of an object label, I- prefix
indicates the tag is inside/end of the object label, and O refers to all non-
tagged words.
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Label: trashcan
Reachability: False

/2 ah F LA
Go to the trashcan across the room
next to the counter
Milestone: (navigation, trashcan)

‘Walk around the island to the sink.
Milestone: (navigation, sink)

Label: fridge
Reachability: True

Pick up the tomato at the front of the table.
Milestone: (interaction, tomato)

Place the egg in the fiidge
Milestone: (interaction, {fridge, egg})

Figure 1. Examples of milestones.

and go to the sink”, BERT-CRF outputs (O, O, O, O, O, B-
Nav). The (tag, word) pair is our predicted milestone for the
instruction. We freeze BERT-CRF during the main model
training.

B.2. Milestone Checking

Here we elaborate on the design decisions for some cor-
ner cases during milestone checking.

* What if an instruction contains multiple mile-
stones?

1. Navigation + Navigation: Navigate to the first
milestone then to the next.

2. Navigation + Interaction: Navigate to the naviga-
tion milestone first and navigate/interact with the
interaction milestone.

3. Interaction + Interaction: Interact with both ob-
jects without specifying a fixed order.

¢ What if an instruction contains no milestone? There
are only less than 1% of such cases in the validation
unseen environments in ALFRED (i.e., 40 out of 5,140
instructions). For those cases, we concatenate the cur-
rent instruction with the next instruction that has mile-
stones detected.

¢ What happens if the milestone builder makes a mis-
take, e.g., missing a milestone / extracting an unnec-
essary milestone / detecting a wrong object? Gener-
ally the milestone builder is pretty accurate (c.f. Table 1
in the main paper), so mistakes are not common. How-
ever, in the cases when a mistake does occur, we cur-
rently have the agent skip the milestone if the checking

fails 15 consecutive times. On the other hand, if the ob-
ject detector fails to detect the object, usually the fail-
ure is recovered later when the agent is in a different
pose to take a new view of the object.

C. Model Implementation Details
C.1. VLNOBERT

Our modified VLNOBERT [13] consists of four mod-
ules: a language encoder, a vision encoder, an action de-
coder, and a pointer network with a multi-layer percep-
tron. Given a time step ¢, the language encoder takes cur-
rent instruction (i.e., the concatenation of the high-level in-
struction and the current low-level instruction) as input and
outputs the contextualized token embeddings. Following
VLNOBERT, we consider the [CLS] embedding as a state
embedding s; representing an agent’s current state and de-
notes other textual token embedding as z;. For the vision
encoder, we leverage Mask R-CNN to obtain two types of
visual features: 1) a scene feature v; representing a view,
and 2) an object feature oy, indicating an object in the view.
In total, we extract 8 scene features from panoramic views
(4 headings of 90° and 2 elevation angles of +30°) and 20
highest scoring object features from all scenes. The ac-
tion decoder then performs a grounded language learning
by taking four inputs: a previous state embedding s;_1, a
sequence of textual embeddings {z;}, a sequence of scene
features {v; }, and a sequence of object features {oy}.

St {l‘;}, {’U}}, {0%} =
VLNOBERT(s;—1, {z:}, {v;}, {ox})

Unlike VLNOBERT, we employ a pointer network [37] to
let the agent choose between navigation and interaction ac-
tion. The pointer network predicts an action for the time
step t by (2), (3), and (4).

(1

Uy, = z ' tanh(Wye, + Was,),

ene Py Uldhhne (L J+K) O

where z, W7, W, are learnable parameters, e, is either the
scene feature or the object feature, and s; is the updated
state embedding.

o(u)n 3)

n = argmax
ne(l,- ,J+K)
where o is the softmax normalizing the vector u. If 7 repre-
sents a scene, the agent should navigate to the scene 7 at the
time step ¢. In contrast, if 7 indicates an object, the agent
should interact with the object 7 at the time step ¢ by the
corresponding interaction action G

a = argmax o(W3[s¢; 05])a S
a€lA

2We omit t on other variables (e.g., textual token embeddings,
scene/object features, etc.) for simplicity except for the state embedding.
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where W3 is the learnable parameter, o}, is the feature of
object 7, and A is the set of 7 interaction actions.

C.2. LSTM

We modify the CNN-LSTM model presented in AL-
FRED [32] with support for a pre-trained object encoder
inspired by common VLN models’ approach [7, 36, 38] in
choosing between multiple scene features. Given a high
level goal instruction G and step-by-step instructions S =
{51, So, vt sn} of n instruction sentences, we concatenate
the goal instruction with only the relevant step-by-step in-
struction such as L = {G, <SEP>, s,,} with <SEP> token
indicating the difference between the goal and step-by-step
instruction. Then we perform a soft-attention on the lan-
guage feature generated from BERT [6] to compute the at-
tention distribution conditioned on the previous hidden state
of the LSTM:

oy = softmax((Wphy—1) ")y

Ty = Oé;r Tt (5)
where W, is the learnable parameter, h;_; is the previous
LSTM hidden state, z; is the current language feature, and
T is the weighted sum of x; over the attention distribu-
tion a;. Furthermore, each visual observation of the agent’s
view is encoded with a pre-trained Mask R-CNN [9], where
we take the scene feature from its ResNet-50-FPN back-

bone. At each time step ¢, the LSTM takes in the ob-
ject feature {0, , }, which are 20 highest-scoring object fea-
tures from the vision encoder concatenated with spatial and
reachability encoding as in VLNOBERT, scene feature v,
language feature «;, previous action embedding a;_1, and
outputs a new hidden state h;:

he = LSTM([{Ot,z};Ut;ft;at—1]7ht—l) (6)

The agent interacts with the environment by choosing
an action and providing a binary mask (if the action is an
interaction). To leverage the power of the pre-trained vision
encoder, we follow [28, 33] and ask our agent to choose
an object o, .. The corresponding pixel mask is retrieved
from the predicted object. We formulate object choosing in
a same fashion as choosing navigable directions in common
VLN models [7, 36, 38]. Action and object are generated
from two different networks:

a; = argmax (W, [he; u])

p(ot,z) =
O, = argmax p(oy, )
z

softmax (o, Wohy) @)

where W, and W, are learnable parameters, and u; =
[vg; E¢; ar—1]. Action prediction is trained with the ground-
truth expert actions and reinforcement learning. The object
feature is learned end-to-end with the ground-truth object
information.

C.3. Vision Encoder

For the vision encoder for M-TRACK, we train an in-
stance segmentation model, Mask R-CNN [©], as our vi-
sion encoder with training data generated from the expert
demonstration images from ALFRED and ground-truth seg-
mentation information from Ai2Thor simulator. Mask R-
CNN is a two-stage detector, which the first stage pro-
poses region of interests (Rol) by Region Proposal Net-
work (RPN) [29] and the second stage extracts Rol features
from the feature map by Rol Align [9] and makes predic-
tions with three heads, box classification, box regression,
and mask head. The box heads share the same Rol features
extracted with proposals, while the mask head extracts with
the predictions by the box regression head.

In the milestone checking, we not only are interested in
objects and their locations but also care about whether they
are reachable by the agent. Following the idea, we further
implement the fourth head, using the same manner as the
mask head, to predict availability for each object. We sim-
ply define objects within 1.5 meters as available for the bi-
nary classification by using the distance information from
Ai2Thor simulator. Finally, the overall loss of pre-training
our vision encoder is the summation of losses from four
heads,

L= ‘Ccls + £reg + ACrnask + ‘Ca'uaib (8)



With a pre-trained vision encoder, we use its ResNet [ 10]
backbone to encode scene features from environments and
top-k Rol features from the mask head as object features to
attend with the language model. For milestone checking, it
also provides object labels and their reachability informa-
tion.

C.4. Learning
C4.1 Reward Shaping

In addition to the progress (navigation) and stop rewards
defined in VLNOBERT [13], we apply the interaction ac-
tion matching as an additional reward to guide the agent to
perform interaction action when needed. Furthermore, we
introduce a visibility reward to make the agent learn to face
the correct direction during the interaction.

Navigation Reward. Following VLNOBERT, navigation
reward acts as a strong supervision for directing our agent
to the target object. Formally, D, is a distance from the
agent to the target object at time ¢, and AD; = D;_1 — Dy
is a change of distance by an action a;. Reward for each a;
is defined as:

1, AD;>0
v R ©)
—1, otherwise
Stop Reward. When the agent decides to stop a; == stop,
we give the agent the final reward depending on if the task
is successful or not:
+3, Task == Success
Tfinal = . (10)
—3, otherwise

where the task success means that the agent has completed
all subtasks for the task.

Interaction Reward. Since VLNOBERT trains the agent
in a navigation-only dataset, we need to define an additional
interaction reward in order for the agent to learn to choose
between navigation and interaction actions. Formally, at a
given time step ¢, the agent will be rewarded if the inter-
action action matches the ground-truth interaction action,
which we retrieve from the environment state. The reward
for each a; is defined as:

+1,
e

Visibility Reward. We define an additional visibility re-
ward to ensure the agent learns to face the correct direction
of the object to be interacted with before predicting an in-
teraction action to that object. This reward is paired with
the interaction reward, so the total reward that an agent can
get from interacting with the right object is +2.

@ ==a; 11)

otherwise

o is reachable (12)

+1
\Y4 )
Ty = {_1

C.4.2 Behavior Cloning

otherwise

Following the prevalent approach in training VLN mod-
els [13,36], we combine reinforcement learning and imita-
tion learning (i.e., behavior cloning) to train our model. At
each time step, the model is expected to produce the ground-
truth action and interaction mask (for interaction actions).
We apply cross-entropy loss between the predicted actions
and the ground-truth action and add it to our reinforcement
learning loss to ensure that the current trajectory is favored
toward the expert demonstration trajectory. While we can
adapt the expert demonstration directly on the LSTM-L +
M-TRACK , it is not straightforward in VLNOBERT-L +
M-TRACK because it requires a panoramic input. Since
ALFRED does not provide panoramic expert demonstra-
tion, we generated panoramic ground-truth trajectory infor-
mation from ALFRED expert demonstration using its tra-
jectory augmentation tool>.

C.5. Training Details

For the LSTM, we use a pre-trained BERT as the lan-
guage encoder and randomly initialize the rest of the model.
For VLNOBERT, we use its pre-trained weights on R2R [1]
to initialize the model. For the vision encoder in the mile-
stone builder, we use a ResNet-50-FPN [9] as the back-
bone for Mask R-CNN and finetune on ALFRED expert
demonstrations from the Ai2Thor simulator [16] with batch
size 16. We finetune the Mask R-CNN pretrained on Im-
ageNet [30] on 4 Nvidia A6000 GPUs for 270k iterations,
with a learning rate of 0.02, which is decreased by 10 at the
210k and 250k iteration. A weight decay of 0.0001 and mo-
mentum of 0.9 are applied. For all the experiments with M-
TRACK and baseline models, we use a single Nvidia 2080TT
GPU and AdamW optimizer is applied with a fixed learn-
ing rate of 10~° for VLNOBERT and 10~ for LSTM. The
batch size is set to 4, and the agent is trained for 20 epochs
maximum. Early stopping is applied when the model shows
no improvement on 3 consecutive epochs, and the model
that shows the highest SR on the validation unseen split is
adopted for testing. For all model training, only training
split was used for training and validation split was held out.

D. Additional Experiments

Agent frequently skips subtask As mentioned in the main
paper, we perform an experiment that shows that the agent
frequently skips a subtask and tries to execute the next sub-
task. In Table 1, we perform an analysis of the first fatal

3https://github.com/askforalfred/alfred/tree/master/gen



Error Types L L+M-TRACK V  V+M-TRACK
No error 76 129 83 134
Interaction Failure 231 255 178 199
Collision 87 99 100 121
Interact with other object 31 23 31 54
Wander endlessly 66 130 22 24
Navigate to next subtask location 47 0 33 0
Navigation Failure 513 436 559 487
Collision 205 288 245 296
Interact with other object 24 18 33 13
Wander endlessly 183 130 203 172
Navigate to next subtask location 101 0 78 0

Table 1. Error cases on unseen validation. Interaction Failure: Agent gets close to the target object but fails to interact with it.
Navigation Failure: Agent does not navigate to the target object at all. Next Action: Next action that happens after the failure has

happened. L stands for LSTM-L and V stands for VLNOBERT-L.

Task Type Valid Unseen Valid Seen
Pick & Place 48 63
Stack & Place 28 25
Place Two 32 38
Examine 50 69
Heat & Place 19 18
Cool & Place 32 29
Clean & Place 27 29

Table 2. Validation completion rate (%) by task type for
VLNOBERT-L + M-TRACK .

error that the agent encounters for the validation unseen
split. We first categorize the failure type by interaction fail-
ure, which the agent gets close to the interaction target but
fails to perform an interaction action, and navigation fail-
ure, where the agent does not get close to a target object at
all. Then, we also retrieve the next sequence of actions after
the failure and sort them into four categories:

* Collision: Agent gets stuck in the environment and can
not get out

* Interaction with other object: Agent interact with
a wrong object or interacts when interaction is not
needed

* Wander endlessly: Agent endlessly repeats a certain
sequence of actions

* Navigate to the next subtask location: Agent nav-
igates to the location of the next target object in the
next subtask

We show that M-TRACK performs better on most error
cases in both interaction and navigation. Specifically, M-
TRACK notably prevents the agent from performing the next

subtask without completing the current one (e.g., 101 vs. 0),
reflecting M-TRACK'’s idea.

M-TRACK completion rate by task type We further ana-
lyze M-TRACK’s completion rate by task type in Table 2.
We can see that M-TRACK excels at completing relatively
simple tasks such as “Pick & Place” or “Examine” effec-
tively, while suffers in complex tasks that require multiple
interactions (e.g., “Heat & Place”). We attribute this phe-
nomenon due to the fact that the current M-TRACK does not
effectively learn the multi-interaction reasoning. However,
by seeing the notable improvement on the simple tasks, M-
TRACK opens up the possibility of leveraging more fine-
grained milestone construction to improve the agent’s task
learning in VLN.
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