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A. Additional implementation details

A.1. MLP architecture in ablation

We detail the architecture of the ‘1-MLP‘ model intro-
duced in Section 4.3. We present the detailed architecture in
Tab. A.1. We use a series of DenseGeneral(DG) layers
and a final Dense available in Flax [3]. The architecture
was determined by running a sweep over various depths.
We found that further increase in model capacity leads to
poor generalization.

Layer Input Dimension Output Dimension

DG(F , 256) B x N x P x F B x N x P x 256

DG12(256, 256) B x N x P x 256 B x N x P x 256

DG(P , 1) B x N x P x 256 B x N x 256

DG(N , 1) B x N x 256 B x 256

Dense(256, 1) B x 256 B x 3

Table A.1. 1-MLP Architecture. We use notations B for batch
size, N for number of reference views, P for number of epipolar
projection and F for feature dimension. DG12 represents 12 layers
of DenseGeneral. We also add skip connections at every fourth
layer in DG12. The final output corresponds to the predicted color.

A.2. Spherical light field encoding

For 360° scenes, we use the two-sphere light field
parametrization [2]. Each ray is represented by two points
on the sphere, by the 4D tuple (θ1, φ1, θ2, φ2). To encode
this representation we found advantageous to use the spher-
ical harmonics basis instead of the sinusoidals. For a given
ray, we evaluate a number of spherical harmonics at each
intersection and concatenate them to obtain its encoding,

Ỹ `
m(θ1, φ1, θ2, φ2) =

[
Y `
m(θ1, φ1) ‖ Y `

m(θ2, φ2)
]
, (1)

where Y `
m(θ, φ) denotes the spherical harmonics of degree

` and order m evaluated at (θ, φ). In our experiments, we
concatenate all the zonal and sectoral harmonics (m = 0
and m = `) upto a maximum degree of 4.

Model PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓

OursP.E. 33.18 0.979 0.027 0.0123
Ours 33.85 0.981 0.024 0.0110

Table A.2. Light field encoding ablation on Blender dataset.

To demonstrate the efficacy of the spherical harmonics
encoding we conduct an ablation on the blender dataset
where we replace the spherical encoding with the regular
positional encoding in NeRF [5]. We refer to this model as
OursP.E.. We report the average metric on the blender dataset
for this ablation in Tab. A.2.

A.3. Metric computation

To compute the SSIM metric we use the function avail-
able in scikit-image package. To compute the LPIPS on for-
ward facing scene (RFF and Shiny), similar to NeX, we use
the VGG model† from [7]. On the blender scenes, similar to
Mip-NeRF, we use the VGG model available in tensorflow
hub to compute LPIPS. We use two different implementa-
tion on LPIPS to ensure fairness of comparison.

B. Additional results
B.1. Real-forward-facing dataset (RFF)

The RFF dataset introduced by Mildenhall et al. [4] con-
sists of 8 forward facing captures with each scene consist-
ing of around 20 to 62 images. We present the scene-wise
breakdown of the results in Table B.3. The metrics for
NeRF and NeX are the ones reported in NeX [6].

B.2. Shiny dataset

The Shiny dataset introduced in NeX [6] presents 8
scenes with challenging view dependent effects, captured
by forward-facing cameras. We present the scene-wise
breakdown of the results in Tab. B.4. The metrics for NeRF
and NeX are the ones reported in NeX [6].

†We use the library provided by https://github.com/
richzhang/PerceptualSimilarity.
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PSNR SSIM LPIPS

Model NeRF NeX Ours NeRF NeX Ours NeRF NeX Ours

Fern 25.49 25.63 24.86 0.866 0.887 0.886 0.278 0.205 0.135
Flower 27.54 28.90 29.82 0.906 0.933 0.939 0.212 0.150 0.107
Fortress 31.34 31.67 33.22 0.941 0.952 0.964 0.166 0.131 0.119
Horns 28.02 28.46 29.78 0.915 0.934 0.957 0.258 0.173 0.121
Leaves 21.34 21.96 22.47 0.782 0.832 0.856 0.308 0.173 0.110
Orchids 20.67 20.42 21.05 0.755 0.765 0.807 0.312 0.242 0.173
Room 32.25 32.32 34.54 0.972 0.975 0.987 0.196 0.161 0.104
Trex 27.36 28.73 30.34 0.929 0.953 0.968 0.234 0.192 0.143

Table B.3. Scene-wise breakdown of quantitative results on the Real Forward-Facing dataset.

PSNR SSIM LPIPS

Model NeRF NeX Ours NeRF NeX Ours NeRF NeX Ours

CD 30.14 31.43 35.25 0.093 0.958 0.989 0.206 0.129 0.041
Tools 27.45 28.16 26.55 0.938 0.953 0.945 0.204 0.151 0.130
Crest 20.30 21.23 21.73 0.670 0.757 0.797 0.315 0.162 0.079
Seasoning 27.79 28.60 28.34 0.898 0.928 0.936 0.276 0.168 0.102
Food 23.32 23.68 22.88 0.796 0.832 0.821 0.308 0.203 0.151
Giants 24.86 26.00 27.06 0.844 0.898 0.928 0.270 0.147 0.065
Lab 29.60 30.43 35.28 0.936 0.949 0.989 0.182 0.146 0.066
Pasta 21.23 22.07 21.63 0.789 0.844 0.855 0.311 0.211 0.096

Table B.4. Scene-wise breakdown of quantitative results on the Shiny dataset.

B.3. Blender dataset

The Blender dataset introduced by Mildenhall et al. [5]
consists of 8 scenes each containing 800 × 800 resolution
images rendered from viewpoints randomly sampled on a
hemisphere around the object. We present the scene-wise
breakdown of the results in Tab. B.5. The metrics for NeRF
and Mip-NeRF were obtained from Mip-NeRF [1].

C. Additional experiments and visualizations
C.1. Plücker coordinates

Our experiments use ray parametrizations specific to the
camera configuration of each type of scene. For forward
facing scenes, we employ the light slab light field repre-
sentation, while for 360° scenes we use the two-sphere. In
this section, we explore the alternative of using Plücker co-
ordinates, which are generic and can represent any kind of
camera configuration. Since our architecture is agnostic to
the light field parametrization, we simply replace the input
ray representation with the 6D Plücker coordinates to per-
form this experiment. When using Plücker coordinates, we
observe a drop of 0.18 dB PSNR on the RFF dataset as com-

pared to the light slab representation. Similarly, we observe
a drop of 0.25 dB PSNR on the Blender dataset when re-
placing the two-sphere parametrization with Plücker coor-
dinates. This suggests that for particular configurations, the
specific (and lower dimensional) ray parametrizations have
a slight advantage over a generic parametrization such as
Plücker coordinates.

C.2. Handling view-dependent effects

While our model is built around geometric constraints
(such as epipolar geometry), the attention-based modeling
provides the capability to downweigh such constrains when
not useful, in order to more directly associate a color to ray
coordinates (as in the Vanilla-NLF model described in Sec-
tion 4.3). We speculate that this, together with the convo-
lutional features (which bring some context) explains our
superior performance on view-dependent effects.

We run a mini-ablation to investigate this hypothesis.
Figure C.1 shows, for the Lab scene from the Shiny dataset,
one crop with transparency/refraction and another that is
diffuse and contains sharp details. Our model works well
on both regions which indicates its flexibility, in contrast



PSNR SSIM LPIPS

Model NeRF Mip-NeRF Ours NeRF Mip-NeRF Ours NeRF Mip-NeRF Ours

Chair 34.08 35.14 35.30 0.975 0.981 0.989 0.026 0.021 0.012
Drums 25.03 25.48 25.83 0.925 0.932 0.955 0.071 0.065 0.045
Ficus 30.43 33.29 33.38 0.967 0.980 0.987 0.032 0.020 0.010
Hotdog 36.92 37.48 38.66 0.979 0.982 0.993 0.030 0.027 0.009
Lego 33.28 35.7 35.76 0.968 0.978 0.989 0.031 0.021 0.010
Materials 29.91 30.71 35.10 0.953 0.959 0.990 0.047 0.040 0.011
Mic 34.53 36.51 35.32 0.987 0.991 0.992 0.012 0.009 0.008
Ship 29.36 30.41 30.94 0.869 0.882 0.952 0.150 0.138 0.084

Table B.5. Scene-wise breakdown of quantitative results on the Blender dataset.

NeX Ours GTVanilla

Figure C.1. Crops from two different regions of the Lab scene in
the Shiny dataset. The Vanilla-NLF model (described in Section
4.3) is able to retrieve a majority of the refraction details but fails
to reproduce high frequencies. NeX reproduces sharp details but
not the refractions. Our model does well in both regions.

with the baselines.

C.3. Visualizing view attention

The attention weights βj (in Eq. 3) correspond to “im-
portance” of each reference view when rendering a target
pixel. We visualize these attention weight for a test image
in the chair scene from Blender dataset in Fig. C.2. We ex-
plain the visualization process in the figure caption.
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Figure C.2. View attention weight visualization. We visualize the attention weights βj for each rendered pixel for a test image from the
chair scene. For each target pixel, we consider three reference views. Thus we have three attention weights β1, β2 and β3 corresponding
to reference views 1, 2 and 3 respectively. We treat these attention weights as RGB value and visualize them as an image as shown above.
Intuitively, this image shows the contribution of each reference view when rendering a pixel. For example, the cushion is predominantly
green as it is most visible in second reference view. Similarly the back of the chair contains almost equal mix of red and blue as it is equally
visible in reference views 1 and 3. We do not show the attention weights for the background pixels for clarity of visualization.
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