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Figure 1. Iterations vs. Attack Success Rate (Untargeted) and
Boundary Loss (BL) on CIFAR-100 dataset [3]. Here, BL de-
notes the distance from the synthesized data to the decision bound-
ary. “*-P” denotes the probability-only scenario and “*-L” repre-
sents the label-only scenario.

A. Extended Description for Our Method

In this section, we offer our readers the extended descrip-
tion for the proposed loss Lg;y, i.e., when the batch-size B
of the input noise less than C'— 1, where C is the class num-
ber of the dataset on which the victim model is deployed.

When it comes to B < C — 1, it is obvious that we can
not explore all the class regions by those samples. In this
scenario, a less-than-ideal alternative is that we can make
those samples as diverse as possible. That is to say, we can
focus on pushing them towards the decision boundary of
their own class and the other B classes. Hence, the opti-
mization function Lg;, then becomes Eq. (1), as shown in
the following:
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Here, g(x),, represents calculating the softmax outputs of
*, where the entries with their index fall into the set of ¢y,
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are excepted. The expression for ¢y, is shown below:

¢r = Sorta_p_1{Norm(D>_S(h)p)}U{k}, (@)

J

where Sortc_p_1{*} denotes taking the first C — B — 1
entries of  in ascending order and S(*), represents taking
all the entries of S(x), of which the k-th entry is excepted.

B. Evaluation Metrics

In this section, the calculation of the two evaluation met-
rics will be further introduced. Briefly speaking, we follow
the protocol of the state-of-the-art [8].

First, let us denote the adversarial perturbations in the
corresponding adversarial examples are e. The adversarial
examples with ||e|| < 8 are seen as the valid ones. Then, the
Attack Success Rate (ASR) is calculated by n/m . Here, n
is the number of valid adversarial examples that can fool the
victim model.

For ASRypar,  1s the number of the images that are clas-
sified correctly by the victim model, and n is the number of
the valid adversarial examples that can be classified to any
other class except its original one by the victim model. For
ASRy,r, m is the number of the images that are not classified
to the specific target labels, and n is the number of the valid
adversarial examples that can be classified to the specific
target labels by the victim model.

C. Extended Results
C.1. Extended Curves on CIFAR-100

Implementation Details. For the experiments in this part,
all the compared methods are trained for 75 epochs with the
default learning rates on each dataset. The learning rates for
all the methods are fixed during training. Besides, for the
experiments on CIFAR-10 dataset [3], we use VGG-16 [7]
as the surrogate model and ResNet-18 [2] as the victim
model. While for CIFAR-100 dataset [3], both the surrogate
model and the victim model are VGG-19 [7]. Moreover, the
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Figure 3. Visualization of the synthesized data generated by our method (the specific proxy dataset is shown in bracket) and
DaST [11] on MNIST dataset [4]. Here, z; represents different input noise, and C; donotes different class.
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Figure 4. Visualization of the synthesized data generated by our method (the specific proxy dataset is shown in bracket) and
DaST [11] on CIFAR-10 dataset [3]. Here, z; represents different input noise, and C; donotes different class.
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Figure 2. Data ablation studies on CIFAR-100 dataset with (a)
Places365 [10] and (b) CUB-200 [9]. Here, we set the number of
proxy images between 1k and 5k to evaluate the performances of
our method and Knockoff under two attack scenarios. The victim
model is ResNet-50 [2].

method “GAN” in Fig. | represents using the vanilla adver-
sarial loss [ 1] to train the proposed generator and discrimi-
nator in this paper. Associating Fig. | in this part with Fig.
1 in the main paper, we can find that for most cases, high
boundary loss failed to provide sustainable improvement.
Besides, it is astonishing that using GAN directly without

any model-specific constraint can even exceed DaST [11],
and the values of boundary loss in all the cases are lower
than DaST [11]. Moreover, when the boundary loss of our
approach get increased abnormally, the attack performance
will decrease sharply.

Based on this observation, as we mentioned in the main
paper, it is reasonable to make a conjecture that samples lay
close to the decision boundary may be effective relatively.
In addition, the distribution built by the proxy images in-
deed contains a large proportion of the samples that are ef-
fective for surrogate training. Even if there is no specific
constraint, the generator can still find those samples. How-
ever, considering the inherently instability [1, 6] of GAN,
we can not just rely on it to search the effective samples
for surrogate training. To this end, our approach adds two
losses to search the specified samples that are effective for
efficient surrogate training.

C.2. Data Ablation Studies on CIFAR-100

Here, we report the data ablation studies on CIFAR-
100 [3] with the two proxy datasets. The victim model here
is ResNet-50 [2]. From Fig. 2 we can find that our method is
not much sensitive to the size of the proxy data. It is worth
emphasizing that although the size of proxy images has no
impressive impact on the performance of both our method
and Knockoff [5], we think the reasons for the two cases
are quite different. For our method, we argue this can be



attributed to the distributions established by proxy images
with the size between 1k to 5k are not much different. While
for Knockoff [5], we believe that the reason is the underfit-
ting problem still dominates, i.e., the proxy images with a
size lower than 5k are unavailing that can not cause signifi-
cant improvement. As a result, our approach can make full
use of the proxy images without the risk of underfitting due
to insufficient data.

C.3. Visualizations of the Synthesized Data

In the end, we provide the visualization of the data syn-
thesized by DaST [11] and our method, respectively. For
our method, the synthesized data via two proxy datasets are
all exhibited. Here, Fig. 3 and Fig. 4 offer the visualiza-
tions on two typical victim datasets, i.e., MNIST [4] and
CIFAR-10 [3] dataset. Looking through Fig. 3 and Fig. 4,
we can see that the intra-class diversity of the synthesized
data via our method are generally larger than those via
DaST. Besides, associating the Kernel Density Estimation
curves of the main paper with Fig. 4, we can find that yet
the inter-class similarity of the synthesized data via our
method is large, images belong to different classes still be
visually distinguishable and stylistically similar. That is,
the synthesized samples are label-controllable with large
inter-class similarity, as expected. While for DaST, the
label-controllable property is relatively poor, i.e., samples
belonging to different classes are almost visually identi-
cal. Moreover, since we utilize a discriminator to limit the
searching space of the generator to the distribution estab-
lished by the proxy images, it is obvious that the synthe-
sized samples own high semantic similarity with the proxy
dataset. Thus, according to the results of peer comparison,
we think that the semantic content of the synthesized data
may be unimportant for the surrogate training. In turn, the
class-specific properties (e.g., the inter-class similarity and
the intra-class diversity) of those synthesized samples may
provide sound development.
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