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Figure 1. Iterations vs. Attack Success Rate (Untargeted) and
Boundary Loss (BL) on CIFAR-100 dataset [3]. Here, BL de-

notes the distance from the synthesized data to the decision bound-

ary. “*-P” denotes the probability-only scenario and “*-L” repre-

sents the label-only scenario.

A. Extended Description for Our Method

In this section, we offer our readers the extended descrip-

tion for the proposed loss Ldiv, i.e., when the batch-size B
of the input noise less than C−1, where C is the class num-

ber of the dataset on which the victim model is deployed.

When it comes to B < C − 1, it is obvious that we can

not explore all the class regions by those samples. In this

scenario, a less-than-ideal alternative is that we can make

those samples as diverse as possible. That is to say, we can

focus on pushing them towards the decision boundary of

their own class and the other B classes. Hence, the opti-

mization function Ldiv then becomes Eq. (1), as shown in

the following:

Ldiv =
1

C

C∑

k

STD[
B∑

j

Norm(g(S(xk
j ))φk

)]. (1)

Here, g(∗)φk
represents calculating the softmax outputs of

∗, where the entries with their index fall into the set of φk

are excepted. The expression for φk is shown below:

φk = SortC−B−1{Norm(
B∑

j

S(xk
j )k)} ∪ {k}, (2)

where SortC−B−1{∗} denotes taking the first C − B − 1
entries of ∗ in ascending order and S(∗)k represents taking

all the entries of S(∗), of which the k-th entry is excepted.

B. Evaluation Metrics

In this section, the calculation of the two evaluation met-

rics will be further introduced. Briefly speaking, we follow

the protocol of the state-of-the-art [8].

First, let us denote the adversarial perturbations in the

corresponding adversarial examples are ε. The adversarial

examples with ||ε|| < 8 are seen as the valid ones. Then, the

Attack Success Rate (ASR) is calculated by n/m . Here, n
is the number of valid adversarial examples that can fool the

victim model.

For ASRuntar, m is the number of the images that are clas-

sified correctly by the victim model, and n is the number of

the valid adversarial examples that can be classified to any

other class except its original one by the victim model. For

ASRtar, m is the number of the images that are not classified

to the specific target labels, and n is the number of the valid
adversarial examples that can be classified to the specific

target labels by the victim model.

C. Extended Results

C.1. Extended Curves on CIFAR-100

Implementation Details. For the experiments in this part,

all the compared methods are trained for 75 epochs with the

default learning rates on each dataset. The learning rates for

all the methods are fixed during training. Besides, for the

experiments on CIFAR-10 dataset [3], we use VGG-16 [7]

as the surrogate model and ResNet-18 [2] as the victim

model. While for CIFAR-100 dataset [3], both the surrogate

model and the victim model are VGG-19 [7]. Moreover, the
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Figure 3. Visualization of the synthesized data generated by our method (the specific proxy dataset is shown in bracket) and
DaST [11] on MNIST dataset [4]. Here, zi represents different input noise, and Ci donotes different class.
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Figure 4. Visualization of the synthesized data generated by our method (the specific proxy dataset is shown in bracket) and
DaST [11] on CIFAR-10 dataset [3]. Here, zi represents different input noise, and Ci donotes different class.
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(a) Places365 dataset
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(b) CUB-200 dataset

Figure 2. Data ablation studies on CIFAR-100 dataset with (a)
Places365 [10] and (b) CUB-200 [9]. Here, we set the number of

proxy images between 1k and 5k to evaluate the performances of

our method and Knockoff under two attack scenarios. The victim

model is ResNet-50 [2].

method “GAN” in Fig. 1 represents using the vanilla adver-

sarial loss [1] to train the proposed generator and discrimi-

nator in this paper. Associating Fig. 1 in this part with Fig.

1 in the main paper, we can find that for most cases, high

boundary loss failed to provide sustainable improvement.

Besides, it is astonishing that using GAN directly without

any model-specific constraint can even exceed DaST [11],

and the values of boundary loss in all the cases are lower

than DaST [11]. Moreover, when the boundary loss of our

approach get increased abnormally, the attack performance

will decrease sharply.

Based on this observation, as we mentioned in the main

paper, it is reasonable to make a conjecture that samples lay

close to the decision boundary may be effective relatively.

In addition, the distribution built by the proxy images in-

deed contains a large proportion of the samples that are ef-

fective for surrogate training. Even if there is no specific

constraint, the generator can still find those samples. How-

ever, considering the inherently instability [1, 6] of GAN,

we can not just rely on it to search the effective samples

for surrogate training. To this end, our approach adds two

losses to search the specified samples that are effective for

efficient surrogate training.

C.2. Data Ablation Studies on CIFAR-100

Here, we report the data ablation studies on CIFAR-

100 [3] with the two proxy datasets. The victim model here

is ResNet-50 [2]. From Fig. 2 we can find that our method is

not much sensitive to the size of the proxy data. It is worth

emphasizing that although the size of proxy images has no

impressive impact on the performance of both our method

and Knockoff [5], we think the reasons for the two cases

are quite different. For our method, we argue this can be



attributed to the distributions established by proxy images

with the size between 1k to 5k are not much different. While

for Knockoff [5], we believe that the reason is the underfit-

ting problem still dominates, i.e., the proxy images with a

size lower than 5k are unavailing that can not cause signifi-

cant improvement. As a result, our approach can make full

use of the proxy images without the risk of underfitting due

to insufficient data.

C.3. Visualizations of the Synthesized Data

In the end, we provide the visualization of the data syn-

thesized by DaST [11] and our method, respectively. For

our method, the synthesized data via two proxy datasets are

all exhibited. Here, Fig. 3 and Fig. 4 offer the visualiza-

tions on two typical victim datasets, i.e., MNIST [4] and

CIFAR-10 [3] dataset. Looking through Fig. 3 and Fig. 4,

we can see that the intra-class diversity of the synthesized

data via our method are generally larger than those via

DaST. Besides, associating the Kernel Density Estimation

curves of the main paper with Fig. 4, we can find that yet

the inter-class similarity of the synthesized data via our

method is large, images belong to different classes still be

visually distinguishable and stylistically similar. That is,

the synthesized samples are label-controllable with large

inter-class similarity, as expected. While for DaST, the

label-controllable property is relatively poor, i.e., samples

belonging to different classes are almost visually identi-

cal. Moreover, since we utilize a discriminator to limit the

searching space of the generator to the distribution estab-

lished by the proxy images, it is obvious that the synthe-

sized samples own high semantic similarity with the proxy

dataset. Thus, according to the results of peer comparison,

we think that the semantic content of the synthesized data

may be unimportant for the surrogate training. In turn, the

class-specific properties (e.g., the inter-class similarity and

the intra-class diversity) of those synthesized samples may

provide sound development.
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