
Supplementary Material

A. Implementation Details

A.1. Deformation Module

Figure 1. Deformation Module

In implementation, we realize the deformation module
with several concatenated NODE blocks with neural veloc-
ity field as the dynamics function. As shown in Fig. 1, the
integral of the last NODE block, which is the intermedi-
ate deformed position, will be the input of the next NODE
block, together with the unchanged latent code of the shape.
pi are the original points in the SDF of shape Xi, pk

i is the
deformed positions of pi after the k-th NODE block and p

′

i

is the final deformed position of pi in the template space.
The neural velocity field is simply residual blocks based

on fully connected layers, which are represented as green
blocks in Fig. 1. The hidden feature size are set to be
512 and the final activate function is set to be tanh because
we want the deformed positions are within the normalized
range [-1, 1]. In Fig. 1, we multiply the point features and
shape features, but it is not necessary. There should be no
significant difference if the point features and shape features
are concatenated instead.

A.2. Training and Inference Setting

During training and inference, the tolerance of NODE
solver is set as 1e−5. We set the length of deform code
as 256 and the points sampled from each shape objects are
8000, of which 4000 are inside points and the others are out-
side points. In inference, the points sampled for optimizing
deform code could be partial or complete. For each organ

class, We train a NDF for 2000 epochs using Adam [4] with
a learning rate 5e − 4 and batch size of 8. Also, we jointly
optimize the deform codes along with NDF training using
Adam with a learning rate 1e − 3. The hyper-parameters
ε and λ follows the setting of [7] and regularization loss
weight λpw is set to be 1. During inference, the deform
codes is optimized for 2400 iterations with a learning rate
5e− 2.

DIT uses the exactly same training and inference setting
as NDF. We train DeepSDF, DIF and AtlasNet for all organs
with the default settings for airline shapes provided by their
official implementations.

B. Data Source and Data Preparation
Pancreas CT dataset contains 82 abdominal contrast en-

hanced 3D CT scans with pancreas labelled. We split 61
samples for training and 21 for testing.

Multi-Modality Whole Heart Segmentation (MMWHS)
challenge [8] provided 60 labelled multi-modality medical
images with 7 whole heart substructure annotated, including
left and right ventricle blood cavity, left and right atrium
blood cavity, myocardium of left ventricle, ascending aorta
as well pulmonary artery. In our experiments, we construct
the whole heart label with the union of the annotations of
blood cavity and myocardium of left ventricle. The ratio
between training set and testing set is 3 : 1.

Lung dataset combines the 85 chest data from [2] and 51
lobe segmentation data from [6]. The six sub-structures la-
belled by lobe segmentation data are upper left lung, middle
left lung, lower middle lung, upper right lung, lower right
lung and trachea. The organ shape we learn to reconstruct is
the union of lung and trachea for both chest data ans lobbe
segmentation data. We put 85 chest data and 17 lobe seg-
mentation data into training set and 34 lobe segmentation
data in testing set.

Liver dataset collects 190 samples coming from [2] with
liver annotations. We split them into 145 and 45 shape in-
stances into training and testing set respectively.

Since all these organs are labelled as 3D volumes, we
first extract the organ surface using Marching Cube, then
follow [5] to sample normalized SDF points near the mesh
surface.

C. Experiments
C.1. Seen Shape Representation

From Tab. 1, we can see DIF-Net [3] performs best in
terms of both CD and NC. As we have discussed in the main
paper, we believe it is because of the extra points sampled
on the shape surface, which could provide you more ac-
curate representation about the zero level set of SDF. But



CD Mean (↓) CD Median (↓) NC Mean (↑) NC Median (↑)
Model / Organ Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart

AtlasNet Sph 4.5 1.76 3.64 5.03 4.08 1.39 3.21 4.64 0.733 0.836 0.82 0.817 0.736 0.841 0.824 0.822
AltlasNet 25 5.48 1.9 8.97 3.08 3.06 0.985 1.86 2.32 0.674 0.833 0.828 0.827 0.684 0.835 0.837 0.83
DeepSDF 0.34 0.232 0.247 0.375 0.335 0.226 0.244 0.359 0.927 0.876 0.933 0.936 0.931 0.877 0.933 0.94
DIF-Net 0.568 0.122 0.122 0.243 0.205 0.102 0.118 0.245 0.979 0.894 0.856 0.961 0.981 0.895 0.856 0.965
DIT 0.349 0.303 0.682 0.632 0.343 0.287 0.376 0.583 0.929 0.878 0.931 0.934 0.935 0.878 0.934 0.94

Ours 0.315 0.291 0.351 0.479 0.309 0.281 0.343 0.45 0.933 0.883 0.939 0.944 0.937 0.884 0.94 0.949

Table 1. Shape Representation – We demonstrate the reconstruction results of different representation methods on four organ categories.
AtlasNet Sph and AtlasNet 25 are AtlasNet using 3D sphere mesh and 25 square patches as the template shape respectively. Lower is
better for chamfer distance (×103) and worse for normal consistency. Bold numbers are the best and the underlined are the second best.

as shown in main paper, the reconstruction performance of
DIF-Net is not competitive compared to other deep implicit
functions like DeepSDF [5] and DIT [7]. Involving many
surface points in training will make deep implicit functions
too ”explicit” to handle the noise in the raw data. In gen-
eral, DeepSDF performs better than our work and DIT on
seen shape representation in terms of CD. It is because,
DeepSDF has latent code with more freedom that it is said
to represent one shape. But in DIT and NDF, the latent code
controls the deformations of one shape. Thus, DeepSDF is
more likely to train and overfit but relies less on the under-
standing of shape priors. Therefore, under a small number
of training samples, we can witness DeepSDF is inferior
to DIT and NDF on unseen shape reconstruction. What’s
more, compared to DIT, our model is better in all organs
and both evaluation metrics.

C.2. Seen Shape Registration

As the unseen shape registration results, our model can
achieve the best performance with great advantages over the
other methods. AtlasNet Sph performs good at the number
of unpleasant faces and even better than NDF on Lung and
heart in terms of E-NMF and SI ratio. But they are very poor
in shape registration accuracy, which reveals that their shape
reconstruction results are over-smoothened. Compared to
DIT and DIF-Net, our results are mostly better, especially
in terms of the unpleasant faces numbers.

C.3. Label Transfer

Here, we will provided quantitative results of label trans-
fer realized by DIT and NDF. We investigate the label
transfer IOU performance on the sub-structures labelled in
MMWHS dataset and lobe segmentation dataset. For this
task, we first choose 5 source meshes from labelled train-
ing samples and apply point correspondence towards all test
samples based on these 5 source meshes. Now we have the
align points of each test shapes with labels. Lastly, we la-
bel each vertex of test mesh with the nearest labeled aligned
points. We didn’t compare the results of DIF and AtlasNet
because they are not even close to the registration perfor-
mance of our method.

Tab. 3 reflects that our method can out-perform DIT on
both MMWHS and lobe segmentation datasets in the label
transfer task. The high IOU score reveals that our work can
distinguish the semantic sub-regions regardless of the shape
variances and has the potential to be applied in few-shot 3D
shape segmentation learning.

C.4. Point-to-point Error

We conducted an experiment on a motion sequence
(chicken wings dance) from the D-FAUST dataset [1], con-
taining dense point correspondence. We used the point-
to-point euclidean distance to evaluate the registration ac-
curacy and compared our method to DiT (the previous
state-of-the-art). Our method yields significantly better re-
sults in both accuracy (L2 distance) and quality (SI, self-
intersection ratio) (Tab. 4).

C.5. Qualitative Results

We encourage readers to zoom in the following illustra-
tions for more detailed comparisons.

Neural Diffeomorphic Flow. Fig. 2 demonstrate how two
shapes find their correspondence via the learned template
and show the intermediate results.

Template Shapes. Fig. 3 presents the template shapes
learned by DIF, DIT and NDF.

Seen/Unseen Shape Representation/Reconstruction. In
Fig. 4, we select five cases for each class to demonstrate the
seen shape representation results of six methods we com-
pared in the main paper. In Fig. 5, we select five cases for
each class to demonstrate the unseen shape reconstruction
results of six methods we compared in the main paper.

Seen and Unseen Shape Registration.
We sample 5 training cases and 5 test cases for the sup-

plementary visual results. From Fig. 6-9, we can see our
NDF is consistently better than the other two methods re-
garding both accuracy and fidelity when doing shape regis-
tration with verying-topology template shapes.



# of CD Mean NC Mean E-NMF Ratio Mean SI Ratio Mean

Vertices Model / Organ Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart

2500

AtlasNet Sph 4.5 1.76 3.64 5.03 0.733 0.836 0.82 0.817 26.7 1.13 1.36 0 5820 289 19.8 0
AtlasNet 25 5.48 1.9 8.97 3.08 0.674 0.833 0.828 0.827 55.3 36.9 68.2 71.2 24700 25600 24800 26300
DIF-Net 3.69 0.584 0.372 1.08 0.847 0.868 0.926 0.893 407 77.6 77.1 107 6870 32.6 933 1450
DIT 0.377 0.312 0.848 0.678 0.92 0.875 0.922 0.931 11.4 1.41 20.6 25.7 5.91 9.45 410 0
Ours 0.326 0.309 0.406 0.528 0.93 0.881 0.934 0.941 0.492 0.221 19.8 30.4 0.656 0.276 15.9 0

5000
DIF-Net 3.65 0.561 0.345 1.02 0.849 0.871 0.933 0.894 435 16.2 54.9 121 6000 79.2 1380 1890
DIT 0.367 0.312 0.882 0.678 0.922 0.875 0.924 0.931 28.2 1.41 17.9 25.7 33.1 9.45 406 0
Ours 0.32 0.299 0.387 0.502 0.932 0.882 0.936 0.943 0.246 0.145 8 15.6 0 0 9.21 0

Table 2. Shape Registration on seen Shape Instances

Figure 2. Demonstration of our representation

Model MMWHS LOBE Mean

DIT 89.94 76.63 83.12
Ours 92.38 76.66 84.52

Table 3. Label IOU on the label transfer task

train test

Model L2 (↓) SI (↓) L2 (↓) SI (↓)

DiT 0.0124 0.0646 0.0121 0.0990
ours 0.0028 0.0215 0.0032 0.0222

Table 4. Registrations results on D-FASUT sequence
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(a) Pancreas (b) Liver

(c) Heart (d) Lung

Figure 4. Seen Shape Representation Examples



(a) Pancreas (b) Liver

(c) Heart (d) Lung

Figure 5. Unseen Shape Reconstruction Examples



(a) Pancreas (b) Liver

(c) Heart (d) Lung

Figure 6. Seen Shape Registration Examples with 2500-vertex Template Shapes



(a) Pancreas (b) Liver

(c) Heart (d) Lung

Figure 7. Seen Shape Registration Examples with 5000-vertex Template Shapes



(a) Pancreas (b) Liver
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Figure 8. Unseen Shape Registration Examples with 2500-vertex Template Shapes



(a) Pancreas (b) Liver

(c) Heart (d) Lung

Figure 9. Unseen Shape Registration Examples with 5000-vertex Template Shapes


