
Appendix:
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge

A. Training setups

A.1. Image classification

We summarize the hyperparamters for training in Tab.
1. Each model was trained with Nesterov’s accelerated gra-
dient method [12] in the stochastic gradient descent. The
cross entropy loss between the model prediction and the
ground truth label was used as the loss function. We grad-
ually warmed up the learning rate for five epochs until it
reached the predefined learning rate shown in Tab. 1. As
baseline augmentation, we used random horizontal flipping
and random cropping with a crop size of 32 for CIFAR-
10 and CIFAR-100 and 224 for ImageNet. In addition, we
also used Cutout with a crop size of 16 for CIFAR-10 and
CIFAR-100, and random color distortion for ImageNet.1

A.2. Semantic segmentation

We trained all models using the stochastic gradient de-
scent with momentum of 0.9 for 300 epochs. The cross
entropy loss between the model prediction and the ground
truth label was used as the loss function. We set the ini-
tial learning rate to 5e-3 and decayed it with poly learn-
ing rate decay where the initial learning rate was multiplied
by
(
1− iter

max iter

)0.9
. The coefficient of the auxiliary loss

used in [17] was set to 0.4. As baseline augmentation, we
used random horizontal flipping and random cropping with
a crop size of 1024. For TeachAugment, the smoothing pa-
rameter ε in label smoothing was set to 0.1. For RandAug-
ment, the number of transformations n and the magnitude
m, were set to 1 and 5, which were tuned for FCN-32s using
grid search.

A.3. Unsupervised representation learning

We evaluated each method following the linear evalua-
tion setting [2].2 We modified the objective of our method

1The implementation of the baseline augmentation and models
are based on https://github.com/kakaobrain/fast-
autoaugment.

2The experimental code is based on https://github.com/
facebookresearch/simsiam.

for SimSiam as follows:

max
φ1,φ2

min
θ

Ex∼X [L(fθ(aφ1
(x)), fθ(aφ2

(x)))

− L(fθ(aφ1
(x)), fθ(aφ2

(x)))], (1)

where L denotes the cosine distance. Because the non-
saturating loss and label smoothing cannot be applied to the
cosine distance, we omitted them in this experiment.

Note that our method with the EMA teacher cannot
be simply applied to other methods, such as BYOL [4]
and MoCo [1, 6], because they already integrate the EMA
teacher into their training frameworks. It will be future
work to investigate combinations of such methods.

As pretraining, we trained ResNet-50 for 100, 200, and
400 epochs with a batch size of 256. The momentum SGD
was employed as the optimizer. The learning rate and the
momentum were set to 0.05 and 0.9, respectively. After
pretraining, we trained a linear classifier for 90 epochs with
a batch size of 4,096. We set the hyperparameters for each
of the methods to the same as the parameters for ImageNet
classification. As baseline augmentation, we used the same
augmentation as in SimSiam [2], namely, random crop-
ping, random horizontal flipping, color jittering, and Gaus-
sian blur. For more details and SimSiam’s hyperparameters,
please refer to [2].

B. Pseudo-Code of TeachAugment
We show the pseudo-code of TeachAugment in Algo-

rithm 1.

C. Details of augmentation model
For the geometric augmentation, we used a three-layer

perceptron. The dimension of the noise vector was 128 and
the number of units in hidden layers was 512. As a non-
linear activation function, we used leaky ReLU [10] with
the negative slope of 0.2. The output, Aunnorm, was nor-
malized through the sigmoid function:

A = λgscale(sigmoid(Aunnorm)− 0.5), (2)

where λgscale controls the search range of A, and we set it to
0.5 (i.e., A ∈ (−0.25, 0.25)2×3).

1

https://github.com/kakaobrain/fast-autoaugment
https://github.com/kakaobrain/fast-autoaugment
https://github.com/facebookresearch/simsiam
https://github.com/facebookresearch/simsiam


WideResNet-40-2 WideResNet-28-10 Shake-Shake (26 2×96d) PyramidNet ResNet-50

Learning rate 0.1 0.1 0.01 0.05 0.05
Weight decay 2e-4 5e-4 1e-3 5e-5 1e-4

Epochs 200 200 1,800 1,800 270
Batch size 128 128 128 64 128

Learning rate decay cosine cosine cosine cosine step

Table 1. Hyperparameters for classification tasks. We set parameters following [8]. Note that we show the batch size per GPU and the
learning rate was multiplied by the number of GPUs (e.g., if two GPUs are used for training, the learning rate is doubled). We used a single
GPU for WideResNet-40-2 and WideResNet-28-10, and four GPUs for the other models. We decayed the learning rate for ResNet-50 by
10-fold at epochs 90, 180, and 240.

Algorithm 1 Training procedure for TeachAugment

Input: A target model fθ, a teacher model fθ̂, dataset X ,
the number of inner iterations ninner, learning rate ηθ
and ηφ, and decay rate for the EMA teacher ξ

1: while θ has not converged do
2: for i = 0, · · · , ninner do
3: if fθ̂ is the EMA teacher then
4: Update teacher weights, θ̂ ← ξθ̂ + (1− ξ)θ
5: end if
6: Randomly sample a mini-batch, {xb}Bb ∼ X
7: Compute loss for the target model,

Lθ =
∑
b L(fθ(aφ(xb)))

8: Update θ by the gradient descent,
θ ← θ − ηθ∂Lθ/∂θ

9: end for
10: Randomly sample a mini-batch, {x̄b}Bb ∼ X
11: Compute loss for the augmentation model,

Lφ =
∑
b(L(fθ(aφ(x̄b)))− L(fθ̂(aφ(x̄b))))

12: Update φ by the gradient ascent, φ← φ+ηφ∂Lφ/∂φ
13: end while
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Figure 1. Illustration of the color augmentation model. σ denotes
the sigmoid function.

For the color augmentation, we used two three-layer per-
ceptrons that receive an RGB vector and a noise vector as
inputs and add up their outputs. The number of units in hid-
den layers was 128 and 512, respectively. As the non-linear
activation, leaky ReLU was used. We illustrate the com-
putational scheme of the color augmentation model in Fig.
1. The former model outputs 3-dimensional scale and shift

parameters:

(αRGB
i , βRGB

i ) ∈ R3×2, (3)

and the latter outputs scalar scale and shift parameters:

(αNoise
i , βNoise

i ) ∈ R1×2. (4)

The scale and shift parameters from the noise vector control
the global brightness of images. Then, we add up these
scale and shift parameters:

(αunnorm
i )j = (αRGB

i )j + αNoise
i , (5)

(βunnorm
i )j = (βRGB

i )j + βNoise
i , (6)

where (αi)j denotes the j-th element of αi ∈ R3. We nor-
malized the scale and shift parameters, (αunnorm

i , βunnorm
i ),

using the sigmoid function:

αi = λcscale(sigmoid(αunnorm
i )− 0.5) + 1, (7)

βi = λcscale(sigmoid(βunnorm
i )− 0.5), (8)

where λcscale controls the search range of αi and βi, and we
set it to 0.8, namely, αi ∈ (0.6, 1.4) and βi ∈ (−0.4, 0.4).

We adopted AdamW [9] as the optimizer for the aug-
mentation model. The learning rate and the weight decay
were set to 1e-3 and 1e-2, which are the default parameters
in PyTorch [13]. Dropout [14] was applied after the linear
layers except for the output layer with the drop ratio of 0.8.

D. Learning pipeline of probabilities pc and pg

We made the decision process of applying the augmenta-
tion differentiable using weights sampled from the relaxed
Bernoulli distribution defined in [11].3 A sample from the
relaxed Bernoulli, w ∼ ReBern(p, τ), is obtained as fol-
lows:

w = sigmoid((L+ log p)/τ), L ∼ Logistic(0, 1), (9)

3The relaxed Bernoulli distribution is referred to as the BinConcrete
distribution in [11].



where τ and p denote the temperature parameter and a prob-
ability that corresponds to pc and pg in our case and L is a
sample from the Logistic distribution, which is obtained by
L = log(U) − log(1 − U), U ∼ Uniform(0, 1). We set τ
to 0.05 following [5]. We note that the sampling procedure,
Eq. 9, is differentiable with respect to the probability p.

We compute weighted sum of the parameters generated
by augmentation models and parameters that make the aug-
mentation the identity mapping:

α̂i = wcαi + (1− wc) · 1, (10)

β̂i = wcβi + (1− wc) · 0, (11)

Â = wgA+ (1− wg)I, (12)

where wc ∼ ReBern(pc, τ) and wg ∼ ReBern(pg, τ). We
use (α̂i, β̂i) and Â to transform images, instead of (αi, βi)
and A:

x̃i = t(α̂i � xi + β̂i), (13)

x̂ = Affine(x̃, Â+ I). (14)

Because the sampling procedure from ReBern(p, τ) is dif-
ferentiable with respect to p, we can also update the proba-
bilities using the gradient method.

E. Additional results
E.1. Relation between consistency regularization

and TeachAugment

TeachAugment can be viewed as a method that mini-
mizes the distance between predictions of the target model
and the teacher model. We show it qualitatively.

We assume that data augmentation aφ can transform
an input data point to any point in the input space, and
the teacher model is fixed during training. Then, solving
maxφ L(fθ(aφ(x)))−L(fθ̂(aφ(x))) corresponds to search-
ing the data augmentation maximizing the distance between
the predictions under the constraint of L(fθ(aφ(x))) >
L(fθ̂(aφ(x))). Then, the target model updates its decision
boundary for minimizing the loss for the augmented data.
This procedure is illustrated in Fig. 2. If the decision bound-
ary of the target model completely corresponds to that of the
teacher model, the data augmentation reaches the stationary
point because the objective L(fθ(aφ(x))) − L(fθ̂(aφ(x)))
is 0 for all data points.

However, the target model would not match the teacher
model in practice, because above analysis lacks certain
points: (1) The data augmentation cannot transform an in-
put data point to any point in the input. (2) We used the non-
saturating loss for the image classification tasks instead of
cross entropy. Thus, L(fθ(aφ(x))) − L(fθ̂(aφ(x))) 6= 0 if
the decision boundary of the target model is the same as that
of the teacher model. (3) TeachAugment does not explicitly
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Figure 2. Illustration of the training process in TeachAugment.
The data augmentation transforms a data point to the point so that
L(fθ(aφ(x))) > L(fθ̂(aφ(x))). Then, the target model is up-
dated to minimize loss for the augmented point. By repeating this
process, the decision boundary of the target model is close to that
of the teacher model.

minimize the distance between the predictions. In particu-
lar, (3) is a more critical point compared to (1) and (2) be-
cause they may be solved by adopting a model large enough
to satisfy the requirement as the augmentation model, and
using an original loss function instead of the non-saturating
loss. Because of the lack of explicit costs for the consis-
tency, TeachAugment does not ensure that the target model
converges with the teacher model.

However, we believe that the above analysis gives some
insights, and comparing TeachAugment to consistency reg-
ularization is important. Thus, we trained model to min-
imize the following costs and compared the results to
TeachAugment:

min
θ
L(fθ(x)) +D(fθ(x), fθ̂(x)), (15)

where D(·, ·) denotes the distance function. We used the
mean squared error and Kullback–Leibler divergence as
D(·, ·). These functions are widely used in the consistency
regularization and the knowledge distillation. We refer to
the former as MSE Consistency and the later as KLD Con-
sistency. Note that we use random horizontal flipping, ran-
dom cropping, and cutout [3] as the data augmentation but
omitted them in Eq. (15) because they were not optimized.
As the teacher model, we used the same EMA teacher in
TeachAugment.

The results are shown in Tab. 2. The consistency meth-
ods do not improve the error rates from the baseline. Thus,
TeachAugment has different properties than the consistency
regularization, and it works well in supervised learning.

E.2. Qualitative analysis

We show augmented images obtained by the aug-
mentation model trained with various objective functions:
TeachAugment, Adversarial AutoAugment (Adv. AA) [16],
and PointAugment [7]. All methods used the same pro-
posed augmentation model as data augmentation.



Dataset CIFAR-10 CIFAR-100

Baseline 3.1 18.4
KLD consistency 3.1 18.2
MSE consistency 3.2 18.5
TeachAugment 2.5 16.8

Table 2. Comparison with the consistency regularization. We re-
port the error rates of WideResNet-28-10. For training with KLD
and MSE consistency, we used random horizontal flipping, ran-
dom cropping, and cutout [3] as data augmentation.

The objective of Adv. AA is as follows:

max
φ

min
θ
L(fθ(aφ(x))). (16)

Also, the objective of PointAugment is as follows:

min
θ
L(fθ(aφ(x))), (17)

min
φ
L(fθ(aφ(x)))

+|1− exp(L(fθ(aφ(x)))− ρL(fθ(x)))|, (18)

where ρ is a dynamic parameter defined as ρ = exp(yT ·
fθ(aφ(x))). Note that Adv. AA updates augmentation func-
tions using the REINFORCE algorithm [15] because many
functions in the search space of AutoAugment are non-
differentiable. However, in our experiments, because our
proposed augmentation is differentiable, we updated aug-
mentation with the gradient descent rather than the REIN-
FORCE algorithm.

The augmented images of CIFAR-10 and CIFAR-100
are shown in Figs. 3 and 4. The images augmented by
Adv. AA obviously collapse, so the meaningful information
is lost. The augmented images obtained by PointAugment
and the proposed method are recognizable, but the proposed
method transforms images more strongly than PointAug-
ment so that the proposed method distorts the aspect ratio
for the geometric augmentation. PointAugment binds the
difficulty of the augmented images through a dynamic pa-
rameter ρ ≤ exp(1), but the proposed method requires only
that the augmented images are recognizable for the teacher
model. As a result, the proposed method allows stronger
augmentation than PointAugment.

E.3. Example of augmented images

We show example results of augmentation for ImageNet
and Cityscapes in Figs. 5 and 6. As can see from Fig. 6, the
augmentation obtained for FCN-32s is obviously different
from the others. Because the output stride of FCN-32s (i.e.,
the ratio of input image spatial resolution to final output
resolution) is lower than that of the others, FCN-32s will
have different properties than PSPNet and Deeplav3. We
believe that the difference leads the different augmentation

of these models. Moreover, it also leads the degradation of
mIoU for FCN-32s in RandAugment and TrivialAugment.
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Figure 3. Augmented images obtained with CIFAR-10 using various methods..
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(a) Original Image (b) Adv. AA (c) PointAugment (d) Ours

Figure 4. Augmented images obtained with CIFAR-100 using various methods..



(a) Original images (b) Augmented images

Figure 5. Augmentations obtained with ImageNet.



(a) Original images (b) FCN-32s (c) PSPNet (d) Deeplabv3

Figure 6. Augmentations obtained with Cityscapes.
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