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0. Introduction

This supplementary document contains the following five points related to our main paper titled bilateral video magnifi-
cation filter (BVMF). We highlight reference numbers associated with our main paper in blue, and those associated with this
supplementary material in red.

1. We show details of the derivations of Eqs. (6, 7), noted in subsection 4.1.

2. We show details of the setting of the length of the finite range |T | of BVMF, noted in subsection 4.1.

3. We evaluate the generalized BVMF that uses a temporal FIR filter instead of the LoG kernel, noted at the end of
subsection 4.2.

4. In terms of excluding large motions of objects in a video, we further evaluate BVMF efficacy with different amplitudes
of large motions A3, noted in “Robustness against Large Motions (Synthesis 2)” in subsection 5.1.

5. Since the parameter tuning for each method requires different time and effort, the main paper fairly compared each
method with the same parameters: the target frequency ft and the amplification factor α. However, here we check the
best results of each method via parameter tuning and validate the effectiveness of BVMF in depth.

Also, please refer to the supplementary video in the supplementary materials file, which contains the video version of the
results in our main paper.
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1. Derivation of Equations

1.1. Derivation of Eq. (6)

In our main paper, Eq. (6) determines the standard deviation σft of the Laplacian of Gaussian (LoG) kernel of Eq. (4) to
maximize the passband of the LoG kernel at ft. The LoG kernel is defined as

LoG(t;σft) := −
t2 − σ2

ft

Zσ4
ft

exp

(
− t2

2σ2
ft

)
, (1)

and we finally derived the optimal σft described in Eq. (6) as

∇fF [LoG(t;σft)](ft) = 0 ⇔ σft =

√
2

2πft
. (2)

For deriving Eq. (6), Eq. (2) here, we first considered a relationship between the Gaussian function G(t;σft) and its
Fourier transform. The Gaussian function G(t;σft) is defined as

G(t;σft) :=
1√

2πσft

exp

(
− t2

2σ2
ft

)
, (3)

and its Fourier transform is given by
F [G(t;σft)](f) = exp

(
−2σ2

ftπ
2f2
)
, (4)

where F [·](f) is the 1D Fourier spectrum, namely the bandpass frequency response, of the input at a frequency f .
From Eqs. (3, 4), the second derivative of the Gaussian function G(t;σft) and its Fourier transform are given by

∂2

∂t2
G(t;σft) =

1√
2πσft

t2 − σ2
ft

σ4
ft

exp

(
− t2

2σ2
ft

)
, (5)

F
[
∂2

∂t2
G(t;σft)

]
(f) = −f2 exp

(
−2σ2

ftπ
2f2
)
. (6)

Note that we can get Eq. (6) via the Fourier differentiation theorem with Eq. (4). Thus, from Eqs. (5, 6), the Fourier transform
of the LoG kernel F [LoG(t;σft)](f) can be described using the Gaussian function as

F [LoG(t;σft)](f) = F

[
−
√
2πσft

Z

∂2

∂t2
G(t;σft)

]
(f) (∵ Eqs. (1, 5))

= −
√
2πσft

Z
F
[
∂2

∂t2
G(t;σft)

]
(f)

=

√
2πσft

Z
f2 exp

(
−2σ2

ftπ
2f2
)

(∵ Eq. (6)).

(7)

Figure 1 shows F [LoG(t;σft)](f) with respect to f . This figure indicates that F [LoG(t;σft)](f) has a single maximum
peak at which the gradient ∇fF [LoG(t;σft)](f) is 0 if f, σft > 0. Therefore, to set the peak of the passband of the LoG
kernel at ft, we should find the σft at which the gradient ∇fF [LoG(t;σft)](ft) is 0. From this fact, we derived Eq. (6),
Eq. (2) here, and analytically solved it as follows.

∇fF [LoG(t;σft)](ft) = 0

⇔ ∂

∂f

√
2πσft

Z
f2 exp

(
−2σ2

ftπ
2f2
)∣∣∣∣∣

f=ft

= 0 (∵ Eq. (7))

⇔
√
2πσft

Z
ft(4σ

2
ftπ

2f2
t − 2) exp

(
−2σ2

ftπ
2f2

t

)
= 0

⇔ (4σ2
ftπ

2f2
t − 2) = 0 (∵ σft , Z, ft > 0)

⇔ σft =

√
2

2πft
(∵ σft > 0)

(8)
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Figure 1. The Fourier transform of the LoG kernel F [LoG(t;σft)](f) with respect to f . The imagery part of F [LoG(t;σft)](f) is 0 and
thus the vertical axis indicates the real part of F [LoG(t;σft)](f), which means the bandpass frequency response of the LoG kernel.

1.2. Derivation of Eq. (7)

In our main paper, the purpose of Eq. (7) is to keep the original magnitude of subtle variations with ft after applying
BVMF. For this purpose, we newly formulated and solved Eq. (7) for Z so that the peak gain of the passband of LoG(t;σft)

is unity, namely 1.0, at ft as follows:

|F [LoG(t;σft)](ft)| = 1

⇔
√
2πσft

Z
f2
t exp

(
−2σ2

ftπ
2f2

t

)
= 1 (∵ Eq. (7))

⇔ Z =
√
2πσftf

2
t exp

(
−2σ2

ftπ
2f2

t

)
⇔ Z = F [Z · LoG(t;σft)](ft) (∵ Eq. (7))

⇔ Z =

∣∣∣∣∣F
[
−
t2 − σ2

ft

σ4
ft

exp

(
− t2

2σ2
ft

)]
(ft)

∣∣∣∣∣ (∵ Eq. (1)).

(9)

2. Setting of the Length of the Finite Range of BVMF

Considering, to extract a signal with ft, the length of the finite range of BVMF |T | must have one or more full ft Hz
cycles of the input signal, we obtain this constraint as

|T | ≧ fs
ft
,

where fs is a sampling rate.
From this constraint, the minimum length of T can be described as |T | = fs/ft, which has the lowest computational cost.

However, this minimum length leads to a coarse set of frequency resolution bins defined as {fbin = m∆f = mfs/|T | =
mft | m = 0, . . . , |T | − 1}. This coarse set has no frequency resolution bins between 0 and ft Hz. Thus, if this minimum
length |T | = fs/ft is used, BVMF mis-extracts all signals with lower frequency (except for 0 Hz) than ft as the target signal
with ft.

From this fact, we set |T | in our main paper as

|T | = 2fs
ft

; (10)

this gives a set of frequency resolution bins defined as{
fbin =

mft
2

∣∣∣∣ m = 0, . . . , |T | − 1

}
.
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Figure 2. Bandpass frequency response of BVMF and the Hamming filter which is used in the generalized BVMF instead of the LoG
kernel. The only difference between (a) and (b) is the scale of y-axis. In this comparison, the target frequency ft = 10 Hz with a sampling
rate fs = 120 Hz. Moreover, to obtain narrower passband than the LoG kernel, we design the Hamming filter to have the four times length
of the finite range of the LoG kernel.

Input Video

Time (sec)

(a)

(b)

(c)
Falling

Subtle vibration after falling

Figure 3. Motion magnification results for subtle vibrations of a corner brace after falling. The right panels show enlarged image frames
in the green dot square in the input video at the moment of falling to the ground and spatiotemporal slices along the red line in the input
video. (a) Original. (b) Hamming filter alone. (c) Generalized BVMF using the Hamming filter instead of the LoG kernel.

This set of frequency resolution bins has a frequency resolution bin between 0 and ft Hz: i.e., fbin = ft
2 . Therefore, using

Eq. (10), the target signal with ft can be isolated from signals with lower frequency than ft, and thus BVMF can effectively
extract the target signal with ft.

3. Generalization of BVMF

One characteristic of the LoG kernel is to cut off some slow large motions that approximate linearly. Such linearity is
often small and may be missed by the Gaussian kernel of Eq. (8) in BVMF. Thus, BVMF needs the LoG kernel to exclude
large motions precisely. Meanwhile, other filters (e.g., a very narrow bandpass filter) may be good alternatives to the LoG
kernel depending on the situation. As formulated in Eq. (3), LoGF kernel can be replaced with any FIR filter. Thus, we can
design the generalized BVMF Γ̂(s(t), t) that can be applied to each specific situation by using an FIR filter q(t; ft) instead
of the LoG kernel as

Cνn,θ,ft(x, t) = Γ̂(s(t), t) ∗ Sνn,θ(x, t),

Γ̂(s(t), t) := G(s(t);σε) q(t; ft).
(11)

For example, we used a Hamming filter for q(t; ft) as one of the narrower bandpass filters than the LoG kernel (see
Fig. 2) and applied this generalized BVMF to a video, where a corner brace falls and bounces, to magnify subtle narrow-band
vibrations of the object. Figure 3 shows that the generalized BVMF using a Hamming filter can magnify subtle narrow-band
vibrations of the object clearly after it falls, even though various frequency vibrations occur (the Hamming filter alone cannot
exclude large deceleration motion at the moment of falling to the ground, see the green dot squares). Therefore, our BVMF
can be generalized to use any FIR filter instead of the LoG kernel.

To use IIR filters (e.g., a Butterworth filter) instead of the LoG kernel, we should reformulate BVMF into a recursive form.
Fortunately, in the context of improving computational complexity, a recursive bilateral filter has been proposed [2], and thus
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Figure 4. Mean squared error (MSE) with different amplitude A3 ∈ [5, 100]. BVMF maintained the lowest MSE over all A3 compared
with the existing temporal filtering [3, 1] and the ablation studies (namely, the LoG kernel, LoGF w/ Gaussian kernel, and LoG kernel with
JAF).

we will seek a way to incorporate this recursive technique into BVMF.

4. Further Evaluation for Effect of Large Motions of Objects

In this section, we further evaluated BVMF in terms of its robustness against large motions of objects. This experiment
follows the experimental setting in “Robustness against Large Motions (Synthesis 2)” in the subsection 5.1, except for the
use of different values of amplitude A3 ∈ [5, 100]. Specifically, we created a synthetic video where the amplitude of the
bottom ball motions was set as A3 ∈ [5, 100]. In this evaluation, we applied each temporal filter to the synthetic video so as
to magnifying only subtle fluctuations d1,2 of the top two balls, but ignore large motions d3 of the bottom ball.

Figure 4 shows mean squared error (MSE) and its scaled standard deviation over time frames at each A3 against the
ground-truth. Note that the scaled standard deviation is one-fifth of the original to fit in the plotting range of Fig. 4. Figure
4 (left) shows MSE for all three balls, the center shows MSE for only the top two balls that subtly fluctuated, while the right
shows MSE for only the bottom ball that moved largely. LoGF [3] and the LoG kernel (ours) showed high MSEs over all
A3 for all three balls (see left plot) due to the collapsed shape of the bottom ball (see right plot). LoGF with JAF [1], LoGF
with the Gaussian kernel, and the LoG kernel with JAF showed lower MSE than that achieved by using LoGF or the LoG
kernel alone because they have a non-linear weighting filter (namely, JAF or the Gaussian kernel) that excludes large motions.
However, their MSEs were not enough low because they have either the problem that large de/acceleration motions cannot
be excluded by JAF or that the subtle fluctuations are magnified incorrectly by using LoGF. In contrast, BVMF yields the
lowest MSEs with low standard deviation (see left, center, and right plots). This indicates that BVMF magnifies only subtle
fluctuations of the top two balls (close to the ground-truth) while excluding large de/acceleration motions of the bottom ball,
which maintains the shape of the bottom ball. Therefore, these results indicate that BVMF offers the best EVM performance
even under the presence of large motions.

5. Magnification Results of Each Temporal Filter with Parameter Tuning

Our proposed BVMF offers rigorous physical meaning; its passband peaks at the target frequency with unity gain. In the
main paper, since the parameter tuning for each method requires different time and effort, we fairly compared each method
with the same parameters ft, α at each experiment. On the other hand, in practice when a user performs the EVM algorithm,
the user often cannot know the true target frequency ft of temporal variations of interest and the desired amplification factor
α in advance. Thus, the user may have to play around with these parameters to get the best results.
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Parameter-tuned LoGF
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Figure 5. Bandpass frequency response of BVMF and the parameter-tuned LoGF. In this comparison, a target frequency ft = 4.0 Hz with
a sampling rate fs = 30 Hz. Note that the parameter-tuned LoGF needs ft = 3 to set its passband peak at 4 Hz.

Input video

Figure 6. Motion magnification results for subtle string vibrations when a tennis racket hits a ball. The top panels show enlarged image
frames in the green dot square in the input video at impact (the ball suddenly stops). The bottom panels show spatiotemporal slices along
the red line in the input video.

From this point of view, we check the best result of LoGF [3] via parameter tuning. Figure 5 shows the passband of the
parameter-tuned LoGF and BVMF. To set the passband peak at 4 Hz, BVMF uses ft = 4 while the parameter-tuned LoGF
needs ft = 3. Moreover, to magnify subtle variations as much as BVMF does, we set α in the parameter-tuned LoGF as α
divided by the peak of its passband (namely, α divided by 0.6989) when BVMF takes α. These parameters’ settings enable
the parameter-tuned LoGF to magnify subtle variations with 4.0 Hz as much as BVMF does.

Figure 6 shows motion magnification results for subtle string vibrations when a tennis racket hits a ball. Comparing Fig. 6
with Fig. 1, the parameter-tuned LoGF (with JAF) magnified the subtle string vibrations as well as BVMF did, but slightly
mis-magnified non-target higher frequency string vibrations (see the bottom panels) due to its wide passband (see Fig. 5).
Furthermore, the parameter-tuned LoGF (with JAF) collapsed the ball shape due to the suddenly stopping ball by hitting
(see the top panels). In contrast, BVMF magnified subtle string vibrations with the target frequency while maintaining the
ball shape. Therefore, BVMF is superior to LoGF even if the user plays around with these parameters (ft, α) to get the best
results.
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