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1. Model Parameters / Optimization Details
Our network follows the mip-NeRF structure. The net-

work fσ is composed of 8 layers with width 512 (Mission
Bay experiments) or 1024 (all other experiments). fc has 3
layers with width 128 and fv has 4 layers with width 128.
The appearance embeddings are 32 dimensional. We train
each Block-NeRF using the Adam [2] optimizer for 300K
iterations with a batch size of 16384. Similar to mip-NeRF,
the learning rate is an annealed logarithmically from 2 ·10−3

to 2 · 10−5, with a warm up phase during the first 1024 itera-
tions. The coarse and fine networks are sampled 256 times
during training and 512 times when rendering the videos.
The visibility is supervised with MSE loss and is scaled by
10−6. The learned pose correction consists of a position
offset and a 3× 3 residual rotation matrix, which is added to
the identity matrix and normalized before being applied to
ensure it is orthogonal. The pose corrections are initialized
to 0 and their element-wise `2 norm is regularized during
training. This regularization is scaled by 105 at the start of
training and linearly decays to 10−1 after 5000 iterations.
This allows the network to learn initial geometry prior to
applying pose offsets.

Each Block-NeRF takes between 9 and 24 hours to train
(depending on hyperparameters). We train each Block-NeRF
on 32 TPU v3 cores available through Google Cloud Com-
pute, which combined offer a total of 1680 TFLOPS and 512
GB memory. Rendering an 1200× 900px image for a sin-
gle Block-NeRF takes approximately 5.9 seconds. Multiple
Block-NeRF can be processed in parallel during inference
(typically fewer than 3 Block-NeRFs need to be rendered for
a single frame).

2. Block-NeRF Size and Placement
We include qualitative comparisons in Figure 2 on the

Mission Bay dataset to complement the quantitative compar-
isons in (§5.3, Table 2). In this figure, we provide compar-
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isons on two regimes, one where each Block-NeRF contains
the same number of weights (left section) and one where
the total number of weights across all Block-NeRFs is fixed
(right section).

3. Block-NeRF Overlap Comparison
In the main paper, we include experiments on Block-

NeRF size and placement (§5.3). For these experiments,
we assumed a relative overlap of 50% between each pair of
Block-NeRFs, which aids with appearance alignment.

Table 1 is a direct extension of Table 2 in the main paper
and shows the effect of varying block overlap in the 8 block
scenario. Note that varying the overlap changes the spatial
block size. The original setting in the main paper is marked
with an asterisk.

The metrics imply that reducing overlap is beneficial for
image quality metrics. However, this can likely be attributed
to the resulting reduction in block size. In practice, having
an overlap between blocks is important to avoid temporal
artifacts when interpolating between Block-NeRFs.

Overlap Size PSNR↑ SSIM↑ LPIPS↓
0% 77m 26.77 0.895 0.262
25% 97m 26.75 0.894 0.269
50%* 116m 26.59 0.890 0.278
75% 136m 26.51 0.887 0.283

Table 1. Effect of different NeRF overlaps in the 8 block scenario
with 0.25M weights per block (2M weights in total). The original
setting used in the main paper is marked*.

4. Block-NeRF Interpolation Details
We experiment with multiple methods to interpolate be-

tween Block-NeRFs and find that simple inverse distance
weighting (IDW) in image space produces the most appeal-
ing videos due to temporal smoothness. We use an IDW
power p of 4 for the Alamo Square renderings and a power
of 1 for the Mission Bay renderings. We experiment with 3D
inverse distance weighting for each individual pixel by pro-
jecting the rendered pixels into 3D space using the expected
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ray termination depth from the Block-NeRF closest to the
target view. The color value of the projected pixel is then
determined using inverse distance weighting with the nearest
Block-NeRFs. Artifacts occur in the resulting composited
renders due to noise in the depth predictions. We also ex-
periment with using the Block-NeRF predicted visibility for
interpolation. We consider imagewise visibility where we
take the mean visibility of the entire image and pixelwise
visibility where were directly utilize the per-pixel visibility
predictions. Both of these methods lead to sharper results
but come at the cost of temporal inconsistencies. Finally we
compare to nearest neighbor interpolation where we only ren-
der the Block-NeRF closest to the target view. This results
in harsh jumps when transiting between Block-NeRFs.

5. Structure from Motion (COLMAP)

We use COLMAP [3] to reconstruct the Mission Bay
dataset. We first split the dataset into 8 overlapping blocks
with 97m radius each based on camera positions (each block
has roughly 25% overlap with the adjacent block). The bun-
dle adjustment step takes most of the time in reconstruction
and we do not see significant improvements if we increase
the radius per block. We mask out movable objects when
extracting feature points for matching, using the same seg-
mentation model as Block-NeRF. We assume a pinhole cam-
era model and provide camera intrinsics and camera pose
as priors for running structure-from-motion. We then run
multi-view stereo within each block to produce dense depth
and normal maps in 3D and produce a dense point cloud of
the scene. In our preliminary experiments, we ran Poisson
meshing [1] on the fused dense pointcloud to reconstruct
textured meshes but found that the method fails to produce
reasonably-looking results due to the challenging geometry
and depth errors introduced by reflective surfaces and the sky.
Instead, we leverage the fused pointcloud and explore two
alternatives, namely, point rendering and surfel rendering,
respectively. To render the test view, we selected the nearest
scene and use OSMesa off-screen rendering assuming the
Lambertian model and a single light source.

In Table 2, we compare two different rendering options
for the densely reconstructed pointcloud. We discard the
invisible pixels when computing the PSNR for both methods,
making the quantitative results comparable to our Block-
NeRF setting.

In Figure 1, we show the qualitative comparisons between
two rendering options with PSNR on the corresponding im-
ages. This reconstruction is sparse and fails to represent
reflective surfaces and the sky.

https://docs.mesa3d.org/osmesa.html

Method PSNR* (train) ↑ PSNR* (test) ↑

COLMAP (point) 13.019 11.933
COLMAP (surfel) 13.291 12.343

Table 2. Quantitative results for COLMAP. We discard invisible
pixels (e.g., sky pixels that COLMAP fails to reconstruct) when
computing the PSNR.
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Figure 1. Qualitative results for COLMAP. We demonstrate the
two rendering options using the fused pointcloud computed by
COLMAP.

6. Examples from our Datasets

In Figure 3, we show the camera images from our Mission
Bay dataset. In Figure 4, we show both camera images and
corresponding segmentation masks from our Alamo Square
dataset.

7. Societal Impact

7.1. Methodological

Our method inherits the heavy compute footprint of NeRF
models and we propose to apply them at an unprecedented
scale. Our method also unlocks new use-cases for neural
rendering, such as building detailed maps of the environment
(mapping), which could cause more wide-spread use in favor
of less computationally involved alternatives. Depending on
the scale this work is being applied at, its compute demands
can lead to or worsen environmental damage if the energy
used for compute leads to increased carbon emissions. As
mentioned in the paper, we foresee further work, such as
caching methods, that could reduce the compute demands
and thus mitigate the environmental damage.

https://docs.mesa3d.org/osmesa.html
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Figure 2. Qualitative results on Block-NeRF size and placement. We show results on the Mission Bay dataset using different options
discussed in § 5.3 of the main paper.

Figure 3. Selection of images from our Mission Bay Dataset.

7.2. Application

We apply our method to real city environments. During
our own data collection efforts for this paper, we were care-
ful to blur faces and sensitive information, such as license
plates, and limited our driving to public roads. Future appli-
cations of this work might entail even larger data collection
efforts, which raises further privacy concerns. While detailed
imagery of public roads can already be found on services

like Google Street View, our methodology could promote
repeated and more regular scans of the environment. Several
companies in the autonomous vehicle space are also known
to perform regular area scans using their fleet of vehicles;
however some might only utilize LiDAR scans which can be
less sensitive than collecting camera imagery.



Figure 4. Selection of front-facing images from our Alamo Square Dataset, alongside their transient object mask predicted by a pretrained
semantic segmentation model.
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