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1. Proofs
In this part, we provide the detailed proofs of the theoretical results in the main paper.

1.1. Proof of Theorem 1

Proof. According to the definitions in the main paper, the empirical clustering risk of the model learning from data of the
new increased view is denoted as

L̂p
n =

1

n

n∑
i=1

L(C(Fp(x
p
i ))). (1)

And the empirical clustering risk of the model learning from data before view increase is defined as

L̂{1,··· ,p−1}
n =

1

n

n∑
i=1

L(C(F{1,··· ,p−1}({xv
i }p−1

v=1))). (2)

The objective of the optimization problem is formulated as

min
λ∈Λ

{
min
θ∈Θ

L̂n(λ,θ)
}
, (3)

with

L̂n(λ,θ) =
1

n

n∑
i=1

L(C(S({xv
i }

p
v=1; {F}p))).

According to the definition of S in the main paper, Eq. (1) and Eq. (2) can be expressed as

L̂p
n = L̂n(λ,θ)|λ1=1,λ2=λ3=0, (4)

and
L̂{1,··· ,p−1}

n = L̂n(λ,θ)|λ2=1,λ1=λ3=0. (5)

As defined, L̂∗
n is the optimal value of the optimization problem in Eq. (3). Thus, for all λ ∈ Λ, the following equality holds:

L̂∗
n ≤ L̂n(λ,θ). (6)

Combining Eqs. (4), (5), and (6), we have
L̂∗

n ≤ L̂p
n,

L̂∗
n ≤ L̂{1,··· ,p−1}

n .

Thus, the following equality holds
L̂∗
n ≤ min{L̂p

n, L̂{1,··· ,p−1}
n }.

This finishes the proof.
∗Corresponding author.
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1.2. Proof of Theorem 2

To prove Theorem 2, we first introduce the following lemma.

Lemma 1. We define the empirical risk and its expectation as

L̂n(gS,H) =
1

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

∑
i̸=j

gS,Hl,s
(xi,xj) +

1

2
(
n
2

) K∑
l=1

∑
i ̸=j

gHl
(xi,xj) +

1

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i=1

gS,Hl,s
(xi,xi),

and

L(gS,H) =
1(
K
2

) K−1∑
l=1

K∑
s=l+1

Ex,x′

[
gS,Hl,s

(x,x′)
]
+

K∑
l=1

Ex,x′

[
gHl

(x,x′)
]
+

1(
K
2

) K−1∑
l=1

K∑
s=l+1

Ex

[
gS,Hl,s

(x,x)
]
.

For any 0 < δ < 1, with probability 1− δ, the following inequality holds:

L(gS,H) ≤ L̂n(gS,H) +
13KM√

n
+ 4(K + 1)M

√
log 1

δ

2n
. (7)

Proof. This proof is inspired by [8]. For any samples S = {x, · · · ,xn}, let S̄ be a samples different from S by only one
instance x̄r. The empirical clustering risk of the hypothesis function gS,H on S̄ is denoted as L̂′

n. We have∣∣∣∣∣ sup
gS,H∈G

∣∣L(gS,H)− L̂n(gS,H)
∣∣− sup

gS,H∈G

∣∣L(gS,H)− L̂′
n(gS,H)

∣∣∣∣∣∣∣
≤ sup

gS,H∈G

∣∣L̂n(gS,H)− L̂′
n(gS,H)

∣∣
≤ sup

gS,H∈G

[
2

n2
(
K
2

) n∑
i=1,i ̸=r

(∣∣∣∣∣
K−1∑
l=1

K∑
s=l+1

gS,Hl,s(xi,xr)

∣∣∣∣∣+
∣∣∣∣∣
K−1∑
l=1

K∑
s=l+1

gS,Hl,s(xi, x̄r)

∣∣∣∣∣
)

+
1

n2
(
K
2

) ∣∣∣∣∣
K−1∑
l=1

K∑
s=l+1

gS,Hl,s(xr,xr)

∣∣∣∣∣
+

1

n2
(
K
2

) ∣∣∣∣∣
K−1∑
l=1

K∑
s=l+1

gS,Hl,s(x̄r, x̄r)

∣∣∣∣∣+ 1(
n
2

) n∑
i=1,i ̸=r

(∣∣∣∣∣
K∑
l=1

gHl(xi,xr)

∣∣∣∣∣+
∣∣∣∣∣

K∑
l=1

gHl(xi, x̄r)

∣∣∣∣∣
)]

≤2(2n− 1)M

n2
+

4KM

n

≤4(K + 1)M

n
,

where the last inequality is obtained by the Assumption 1 in the main paper. According to the McDiarmid inequality [12],
we have

L(gS,H) ≤L̂n(gS,H) + E sup
gS,H∈G

∣∣L(gS,H)− L̂n(gS,H)
∣∣+ 4(K + 1)M

√
log 1

δ

2n
. (8)

Then we analyze the upper bound of the expectation term, i.e., ES supgS,H∈G
∣∣L(gS,H)− L̂n(gS,H)

∣∣. First, we have

ES sup
gS,h∈G

∣∣L(gS,H)− L̂n(gS,H)
∣∣

=ES sup
gS,H∈G

∣∣∣∣∣L(gS,H)− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(xi,xi)−
1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i ̸=j

gS,Hl,s(xi,xj)−
1

2
(
n
2

) K∑
l=1

n∑
i ̸=j

gHl(xi,xj)

∣∣∣∣∣
≤ES sup

gS,h∈G

∣∣∣∣∣L(1)(gS,H)− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(xi,xi)

∣∣∣∣∣+ ES sup
gS,h∈G

∣∣∣∣∣L(2)(gS,H)− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i ̸=j

gS,Hl,s(xi,xj)

∣∣∣∣∣
+ ES sup

gS,h∈G

∣∣∣∣∣L(3)(gS,H)− 1

2
(
n
2

) K∑
l=1

n∑
i̸=j

gHl(xi,xj)

∣∣∣∣∣,
where L(1)(gS,H) := 1

(K2 )

∑K−1
l=1

∑K
s=l+1 Ex[gS,Hl,s

(x,x)], L(2)(gS,H) := 1

(K2 )

∑K−1
l=1

∑K
s=l+1 Ex,x′ [gS,Hl,s

(x,x′)], and

L(3)(gS,H) :=
∑K

l=1 Ex,x′ [gHl
(x,x′)]. Let σ1, · · · , σn be i.i.d. Rademacher random variables taking values in {−1, 1} with
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equal probability and S̄ := {x̄1, . . . , x̄n} be an independent copy of S := {x1, . . . ,xn}. Then the first term can be bounded
by

ES sup
gS,h∈G

∣∣∣∣∣L(1)(gS,H)− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(xi,xi)

∣∣∣∣∣
≤ES,S̄ sup

gS,H∈G

∣∣∣∣∣ 1

n
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(x̄i, x̄i)−
1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(xi,xi)

∣∣∣∣∣
≤ES,S̄ sup

gS,H∈G

∣∣∣∣∣ 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

[gS,Hl,s(x̄i, x̄i)− gS,Hl,s(xi,xi)]

∣∣∣∣∣+ ES̄ sup
gS,H∈G

∣∣∣∣∣ n− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

gS,Hl,s(x̄i, x̄i)

∣∣∣∣∣
=ES,S̄,σ sup

gS,H∈G

∣∣∣∣∣ 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

σi[gS,Hl,s(x̄i, x̄i)− gS,Hl,s(xi,xi)]

∣∣∣∣∣+ ES,σ sup
gS,H∈G

∣∣∣∣∣ n− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣
=2ES,σ sup

gS,H∈G

∣∣∣∣∣ 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣+ ES,σ sup
gS,H∈G

∣∣∣∣∣ n− 1

n2
(
K
2

) K−1∑
l=1

∑
s>l

n∑
i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣
≤2max

l,s
ES,σ sup

gS,H∈G

1

n2

∣∣∣∣∣
n∑

i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣+max
l,s

ES,σ sup
gS,H∈G

1

n

∣∣∣∣∣
n∑

i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣.
The second term can be bounded by

ES sup
gS,h∈G

∣∣∣∣∣L(2)(gS,H)− 1(
K
2

)
n2

K−1∑
l=1

∑
s>l

∑
i̸=j

)gS,Hl,s(xi,xj)

∣∣∣∣∣
≤ES sup

gS,h∈G

∣∣∣∣∣L(2)(gS,H)− 1(
K
2

)
n(n− 1)

K−1∑
l=1

∑
s>l

∑
i ̸=j

gS,Hl,s(xi,xj) +
1(

K
2

)
n2(n− 1)

K−1∑
l=1

∑
s>l

∑
i ̸=j

gS,Hl,s(xi,xj)

∣∣∣∣∣
≤ES sup

gS,h∈G

∣∣∣∣∣L(2)(gS,H)− 1(
K
2

)
n(n− 1)

K−1∑
l=1

∑
s>l

∑
i ̸=j

gS,Hl,s(xi,xj)

∣∣∣∣∣+ ES sup
gS,h∈G

∣∣∣∣∣ 1(
K
2

)
n2(n− 1)

K−1∑
l=1

∑
s>l

∑
i ̸=j

gS,Hl,s(xi,xj)

∣∣∣∣∣
≤ES sup

gS,h∈G

∣∣∣∣∣L(2)(gS,H)− 1(
K
2

)
⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

gS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣+ ES sup
gS,h∈G

∣∣∣∣∣ 1(
K
2

)
n⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

gS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣
≤ES,S̄ sup

gS,H∈G

∣∣∣∣∣ 1(
K
2

)
⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

[gS,Hl,s(x̄i, x̄i+⌊n/2⌋)− gS,Hl,s(xi,xi+⌊n/2⌋)]

∣∣∣∣∣
+ ES sup

gS,h∈G

∣∣∣∣∣ 1(
K
2

)
n⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

gS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣
=ES,S̄,σ sup

gS,H∈G

∣∣∣∣∣ 1(
K
2

)
⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

σi[gS,Hl,s(x̄i, x̄i+⌊n/2⌋)− gS,Hl,s(xi,xi+⌊n/2⌋)]

∣∣∣∣∣
+ ES,σ sup

gS,H∈G

∣∣∣∣∣ 1(
K
2

)
n⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

σigS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣
=2ES,σ sup

gS,H∈G

∣∣∣∣∣ 1(
K
2

)
⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

σigS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣+ ES,σ sup
gS,H∈G

∣∣∣∣∣ 1(
K
2

)
n⌊n/2⌋

K−1∑
l=1

∑
s>l

⌊n/2⌋∑
i=1

σigS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣,
where the third inequality is obtained by the Lemma A.1 in [1]. Similarly, the third term can be bounded by

ES sup
gS,h∈G

∣∣∣∣∣L(3)(gS,H)− 1

n(n− 1)

K∑
l=1

∑
i ̸=j

gHl(xi,xj)

∣∣∣∣∣
≤2ES,σ sup

gS,H∈G

∣∣∣∣∣ 1

⌊n/2⌋

K∑
l=1

⌊n/2⌋∑
i=1

σigHl(xi,xi+⌊n/2⌋)

∣∣∣∣∣ ≤ 2Kmax
l

ES,σ sup
gS,H∈G

1

⌊n/2⌋

∣∣∣∣∣
⌊n/2⌋∑
i=1

σigHl(xi,xi+⌊n/2⌋)

∣∣∣∣∣.
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Combining the aforementioned results, according to the Khintchine-Kahane inequality [6] and the Assumption 1 in the main
paper, we have

ES sup
gS,h∈G

∣∣L(gS,H)− L̂n(gS,H)
∣∣

≤2max
l,s

ES,σ sup
gS,H∈G

1

n2

∣∣∣∣∣
n∑

i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣+max
l,s

ES,σ sup
gS,H∈G

1

n

∣∣∣∣∣
n∑

i=1

σigS,Hl,s(xi,xi)

∣∣∣∣∣
+ 2max

l,s
ES,σ sup

gS,H∈G

1

⌊n/2⌋

∣∣∣∣∣
⌊n/2⌋∑
i=1

σigS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣+max
l,s

ES,σ sup
gS,H∈G

1

n⌊n/2⌋

∣∣∣∣∣
⌊n/2⌋∑
i=1

σigS,Hl,s(xi,xi+⌊n/2⌋)

∣∣∣∣∣
+ 2Kmax

l
ES,σ sup

gS,H∈G

1

⌊n/2⌋

∣∣∣∣∣
⌊n/2⌋∑
i=1

σigHl(xi,xi+⌊n/2⌋)

∣∣∣∣∣
≤max

l,s
ES sup

gS,H∈G

n+ 2

n2

(
n∑

i=1

[gS,Hl,s(xi,xi)]
2

) 1
2

+max
l,s

ES sup
gS,H∈G

2n+ 1

n⌊n/2⌋

( ⌊n/2⌋∑
i=1

[gS,Hl,s(xi,xi+⌊n/2⌋)]
2

) 1
2

+ 2Kmax
l

ES sup
gS,H∈G

1

⌊n/2⌋

( ⌊n/2⌋∑
i=1

[gHl(xi,xi+⌊n/2⌋)]
2

) 1
2

≤3M√
n

+
3M√
⌊n/2⌋

+
2KM√
⌊n/2⌋

≤13KM√
n

.

Incorporating this bound into Eq. (8), with probability 1− δ, we have

L(gS,H) ≤ L̂n(gS,H) +
13KM√

n
+ 4(K + 1)M

√
log 1

δ

2n
. (9)

Proof of Theorem 2. Without loss of generality, we assume that min{Lp,L{1,··· ,p−1}} = Lp. According to Lemma 1, with
probability 1− δ, the following inequalities holds:

L − L̂∗
n ≤ +

13KM√
n

+ 4(K + 1)M

√
log 2

δ

2n
, (10)

L̂p
n − Lp ≤ +

13KM√
n

+ 4(K + 1)M

√
log 2

δ

2n
. (11)

Combing Eq. (10) and Eq. (11), with probability 1− δ, the following inequality holds:

L+ L̂p
n − L̂∗

n ≤ Lp +
26KM√

n
+ 8(K + 1)M

√
log 2

δ

2n
. (12)

According to Theorem 1, there exists a constant ϵ ≥ 0 such that L̂∗
n + ϵ = min{L̂p

n, L̂
{1,··· ,p−1}
n } holds. Therefore, with

probability 1− δ, we have

L+ ϵ ≤min{Lp,L{1··· ,p−1}}+ c1√
n
+ c2

√
log 2

δ

2n
, (13)

where c1 := 26KM and c2 := 8(K+1)M are constants dependent on K and M . ϵ is formulated as ϵ := min{L̂p
n, L̂

{1,··· ,p−1}
n }−

L̂∗
n. This finishes the proof.

Remark 1. We show that when the model is trained sufficiently, the empirical clustering risk of the proposed DSMVC is an
example of the divergence-based clustering framework presented in the main paper. As mentioned in the main paper, the
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empirical clustering risk of the proposed DSMVC can be rewritten as

L̂n =
1(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i,j=1

YilKijYjs√∑n
a,b=1 YalKabYbl

∑n
a,b=1 YasKabYbs

+
1

2
(
n
2

) K∑
l=1

n∑
i,j=1,i ̸=j

YilYjl

+

K−1∑
l=1

K∑
s=l+1

(
K
2

)−1∑n
i,j=1 DilKijDjs√∑n

a,b=1 DalKabDbl

∑n
a,b=1 DasKabDbs

.

(14)

Without loss of generality, assume that x1, · · · ,xn1 ∈ C1; · · · ;xnK−1+1, · · · ,xn ∈ CK , where n1 is the number of instances
that belong to the cluster C1, n2 is the number of instances that belong to the cluster C2, and so on. For a given instance
pairs {xi,xj}, if both the instance xi and the instance xj belong to the l-th cluster, then we have YilKijYjl ≈ 1. If instance
xi or instance xj does not belong to the l-th cluster, then we have Yil ≈ 0 or Yjl ≈ 0. Thus,

∑n
i,j=1 YilKijYjl = n2

l

holds. Similarly, if both the instance xi and the instance xj belong to the l-th cluster, DilKijDjl ≈ 1 holds. Otherwise, we
have DilKijDjl ≈ 0. Generally, the categories of the multi-view data are evenly distributed, i.e., n1 = · · · = nK = n

K .
Thus, the following equality group holds:

1√∑n
i,j=1 YilKijYjl

∑n
i,j=1 YisKijYjs

=
K

n
,

1√∑n
i,j=1 DilKijDjl

∑n
i,j=1 DisKijDjs

=
K

n
.

(15)

Then Eq. (14) can be expressed as

L̂n =
K2

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i,j=1

YilKijYjs +
K2

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i,j=1

DilKijDjs +
1

2
(
n
2

) K∑
l=1

n∑
i,j=1,i ̸=j

YilYjl. (16)

We define the hypothesis functions Hl,s for l = 1, · · · ,K − 1, s = l + 1, · · · ,K, Hl for l = 1, · · · ,K, and S as

YilYjs +DilDjs := Hl,s(xi,xj),

YilYjl := Hl(xi,xj),

Kij := S(xi,xj).

(17)

Then Eq. (14) can be written as

L̂n(gS,H) =
K2

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i,j=1

S(xi,xj)Hl,s(xi,xj) +
1

2
(
n
2

) K∑
l=1

n∑
i,j,i ̸=j

Hl(xi,xj). (18)

Thus, neglecting a constant factor K2 in the first term, the empirical risk of DSMVC can be regarded as an example of
the divergence-based clustering framework presented in the main paper. It can be verified that Hl,s(·, ·) ∈ [0, 2] for l =
1, . . . ,K − 1, s = l + 1, · · · ,K, Hl(·, ·) ∈ [0, 1] for l = 1, . . . ,K, and S(·, ·) ∈ [0, 1] hold. Thus, the defined hypothesis
functions satisfy Assumption 1 in the main paper for M = 2. Note that training sufficiently condition presented in Lemma 1
is a sufficient rather than necessary condition. That is, the empirical clustering risk of the proposed DSMVC may still be
treated as an example of this clustering framework.

2. Experiment Details
In this part, we present the experiment detail of the proposed method.
Datasets. The experiments are conducted on several benchmark multi-view datasets. Digit [2] consists of 2000 instances
and each data point is represented by six features, including 216-D profile correlations, 76-D Fourier coefficients of the
character shapes, 64-D Karhunen-Love coefficients, 6-D morphological features, 240-D pixel averages in 2 × 3 windows,
and 47-D Zernike moments. Caltech [4] is consist of five features from RGB image, including 40-D wavelet moments
(WM), 254-D CENTRIST, 928-D LBP, 512-D GIST, and 1984-D HOG. 200 instances are randomly sampled from each
category and constructed as a multi-view dataset with 5 views. VOC (PASCAL VOC 2007) [3] contains 9,963 image-text
pairs from 20 different categories. Following [16, 19], 5,649 instances are selected to construct a two-view dataset, where
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Dataset Dimensions #Sample #View #Category
Caltech-2V 40, 254 1,400 2 7
Caltech-3V 40, 254, 928 1,400 3 7
Caltech-4V 40, 254, 928, 512 1,400 4 7
Caltech-5V 40, 254, 928, 512, 1,984 1,400 5 7
Digit-2V 240, 76 2,000 2 10
Digit-3V 240, 76, 216 2,000 3 10
Digit-4V 240, 76, 216, 47 2,000 4 10
Digit-5V 240, 76, 216, 47, 64 2,000 5 10
Digit-6V 240, 76, 216, 47, 64, 6 2,000 6 10
RGB-D 2,048, 300 1,449 2 13

VOC 512, 399 5,649 2 20
Multi-MNIST 28× 28 60,000 2 10

Table 1. Dataset Description.

the first and the second view is 512-D Gist feature and 399-D word frequency count of the instance respectively. RGB-
D (SentencesNYUv2) [5] is an indoor scenes image-text dataset where the image is described by the text. The version
provided in [16, 19] is adopted in the experiments, which provides visual features from a ResNet-50 network pretrained on
the ImageNet dataset and textual features from a doc2vec model pretrained on the Wikipedia dataset. Multi-MNIST is a
multi-view version of the popular MNIST dataset [7], whose two views are the raw image and its augmented version with a
highlighted edge. [16, 19]. The description of each dataset is summarized in Table 1.
Experimental settings. For a fair comparison, most settings in the experiments are the same as the settings in [16]. Con-
cretely, the feature extractors of the proposed DSMVC on Caltech, Digit, RGB-D, and VOC datasets are implemented by fully
connected layers with dimensions of 512-512-256. And the feature extractors of the proposed DSMVC on Multi-MNIST
dataset are implemented by a convolution neural network, whose architecture can be expressed as Input-Conv (32, 5)-Conv
(32, 5)-MaxPool (2)-Conv (32, 3)-Conv (32, 3)-MaxPool (2). Conv (32, 5) means a convolution layer where the kernel size
and the number of channels are 5 and 32, respectively. MaxPool (2) denotes a maxpooling layer where the kernel size is
2. The cluster assignment module on all datasets has the same architecture, which consists of a fully connected layer with
dimensions 100 and a Softmax layer. The safe module is implemented by a group of differential parameters with a Softmax
activation. ReLU is adopted as the activation function. The batch size and the number of training epochs are 128 and 120
for all datasets. Adam optimizer with gradient clipping is adopted, where the max gradient norm is 5. For Digit, Caltech,
RGB-D, and VOC datasets, the learning rate decay technique is adopted, where the decay step and the decay factor are 50
and 0.5, respectively. For all baseline methods, the running results of the open source codes with default settings are reported.
Concretely, for spectral clustering [14], the results on the concatenation of data from all views are reported as it is a single-
view clustering method. For RMVC [15], the single-view clustering results and the candidate multi-view clustering results
are obtained by Best single-view normalized cut [14] and localized SimpleMKKM [11], respectively. For COMPLETER [9],
results on data of the new increased view and its nearest view are reported due to the released code can only be conducted on
data with two views. For other compared methods [10, 11, 13, 16–19], the settings recommended by the authors are adopted.
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