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Overview

This is the supplementary file for our submission titled Generalized Few-shot Semantic Segmentation. This material
supplements the main paper with the following content:

¢ (1) Implementation Details.
— (1.1) Training Configurations.
# (1) General Configuration.
% (2) Configuration for GFS-Seg.
# (3) Configuration for FS-Seg.
— (1.2) Implementation Details in FS-Seg.
% (1) CAPL on PANet.
% (2) CAPL on PFENet.
— (1.3) Transferring FS-Seg Models to GFS-Seg.
* (2) Alternative Prototype Fusion Strategies.
¢ (3) Use of Existing Assets.

* (4) Visual Illustration.



1. Implementation Details
1.1. Training Configurations

General Configuration. Our experiments are conducted on Pascal-VOC [4] with augmented data from [5]. Following
Pascal-5° [12], 20 classes in Pascal-VOC are evenly divided into four splits and each split contains 5 classes to cross-validate
the performance of models. Specifically, when using one split for providing novel classes, classes of the other three splits
and the background class are treated as 16 base classes. Different from FS-Seg where the evaluation is only performed
on the novel classes of test samples, GFS-Seg models predict labels from both base and novel classes simultaneously on
test images from the validation sets. As the number of either base or novel classes increases, the generalized few-shot task
becomes more challenging. Therefore, the experiments on COCO [&] are also included with cross-validation on four splits
following [ 1,9, 14]. COCO is a rather challenging dataset with an overwhelming number of categories, i.e., 60 base and 20
novel classes for each split.

We build our models on PyTorch. We keep the backbone configuration of PSPNet with the output of the feature extractor
being % of the input spatial size. The weights of the last 1 x 1 convolution layer (classifier) of size [512, N, 1, 1] are used
as IV 512-dimensional prototypes for IV classes. The backbone weights are pre-trained on ImageNet [11]; other layers are
initialized by the default setting of PyTorch. For later experiments on DeepLab-V3 [3], prototypes have 256 dimensions and
the backbone configuration is the same as that of PSPNet. For each benchmark, we take the average of all splits as the final
performance, and our experimental results in GFS-Seg are averaged over five different random seeds. All predictions are
evaluated on the original labels without resizing.

Data augmentation on training images includes mirroring and re-scaling from 0.5 and 2.0, and random rotation from -10
to 10 degrees. Finally, we randomly crop 473 x 473 patches as training samples, following the official implementation of
PSPNet [18]. We output the prediction without additional post-processing (e.g., fully connected conditional random field
(CRF) [6] and multi-scale testing). All experiments are run on NVIDIA Titan X GPU, and predictions are evaluated with the
original labels without resizing.

Configuration for GFS-Seg. We use cross-entropy loss in CAPL and SGD for optimization. Weight decay and momentum
are set to 0.0001 and 0.9 respectively. The ‘poly’ learning rate decay [2] is used by multiplying the initial learning rate with
(1 — currentiter)power where power is set to 0.9. We train all models for 50 epochs on both Pascal-5" and COCO-20'.
For models on Pascal-5%, we set the initial learning rate and training batch size to 0.01 and 6 with a single GPU. For models
on COCO-20¢, the initial learning rate and training batch size are 0.01 and 12 with two GPUs. The two-layers MLP for
producing v,y in SCE is constructed by two fully-connected layers with the intermediate ReLLU activation function. The

output of MLP is then processed by the Sigmoid function.

Configuration for FS-Seg. The backbone configurations are the same as the ones used in [7, 14, 16]. Similar to [15], our
models are trained for 30,000 and 60,000 steps on Pascal-5¢ and COCO-20? respectively with the same initial learning rate
0.0005 and batch size 3 on a single GPU. SGD is adopted as the optimizer. Weight decay and momentum for FS-Seg
experiments are set to 0.0005 and 0.9, and the learning rate is reduced by 0.1 every 10,000 / 20,000 iterations for Pascal-5°
and by every 20,000 / 40,000 iterations for COCO-20°. Our 5-shot results are obtained by evaluating the models trained in
the 1-shot setting following [9, 14—17].

1.2. Implementation Details in FS-Seg.

In the main paper, we have applied the proposed CAPL to two representative FS-Seg models, i.e., PANet [15] and
PFENet [ 14]. Due to the page limit of the main paper, the detailed descriptions regarding the implementations are presented
as follows.

CAPL on PANet. We first apply our method to PANet whose predictions are directly yielded by calculating the cosine
similarity between query features and fore-/background prototypes. Since the base classes are not examined during the
evaluation phase of FS-Seg, both fore- and background prototypes are the context-providers. Therefore, we simply combine
the SCE and DQCE and use two factors v¢ (i € {fg,bg}) to enrich the contextual information for fore- and background
prototypes respectively:

Peapt =7 *P" + (1 =7") *pg,,,, i€ {fg,bg}. (1

Specifically, p’ denotes the prototype yielded by the original method of PANet, i.e., mask pooling the support features,
and pfﬂy is the query prototypes obtained via Eq. (5) of our main paper. 4* directly balances the contributions of them to
enrich the contextual hints, and the final prediction is obtained by calculating the cosine similarity between pf:apl and the



query features, instead of the original p’. Similar to GFS-Seg where vgup and véry are independently produced by G..,, (i.e.,
a two-layers MLP) and G (i.e., cosine similarity), CAPL in FS-Seg also leverages the merits of them by applying both
MLP and cosine similarity to p* and pfm}, written as:

| o o .
7' =5 * (Cos(p', pyyy) + MLP(P', Pyyy)), @ € {f9,b9}- 2)

The original training loss of PANet consists of the main segmentation loss L., and the prototype alignment regularization
loss Lpar. PANet+CAPL does not alter these training objectives, but the predictions supervised by L., are yielded by the
enhanced prototype piapl, instead of the original prototype p'.

We investigate the effectiveness of applying CAPL to PANet in Table | where ‘CAPL (Cos)’ means only cosine similarity
is adopted in Eq. (2) and ‘CAPL (Cos+MLP)’ represents both Cos and MLP are used for generating v*. It is observed
that CAPL (Cos) can yield decent performance gain to the baseline PANet and MLP further improves it by introducing an
additional data-conditioned adaptation to ~*.

1-shot 5-shot
Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
PANet 423 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7
PANet* 42.6 58.0 54.8 43.8 49.8 49.1 65.6 60.9 50.9 56.6
PANet + CAPL(Cos) 58.0 67.1 63.0 52.3 60.1 60.1 71.7 68.3 60.5 65.2
PANet + CAPL(Cos + MLP) 58.1 66.9 63.8 53.7 60.6 62.9 71.7 68.7 61.2 66.1

Table 1. Ablation study on applying CAPL to models in FS-Seg. PANet denotes the results reported in the original paper. PANet™ is
reproduced by our training configuration.

CAPL on PFENet. Different from PANet whose predictions are directly produced by the cosine similarity between the
fore- and background prototypes, PFENet adopts several convolutional blocks to process the concatenation of middle-level
query and support features. Besides, the reasoning between query and support features is guided by an additional prior mask
obtained from the pixel-wise correlation between high-level query and support features. In GFS-Seg, CAPL is applied to the
last high-level feature map so as to fully exploit the semantic knowledge, therefore we consider adopting CAPL on PFENet
to enhance the utilization of high-level features.

Concretely, different from the original prior mask generation method that takes the maximum values from pixel-to-pixel
correlation map as the prior mask, we apply mask-pooling on the high-level support features to get the support fore- and
background prototypes p (i € {fg,bg}). Then, the proposed CAPL yields enhanced prototypes piapl (i € {fg,bg}) by
following Eqs. (1)-(2). After that, the high-level prediction y,,; ., € RPaxwq %2 i5 produced by measuring the cosine similarity
between the high-level query features and piapl (i € {fg,bg}). Besides, we apply the Softmax operation to 7 * y;,; gn and
take the dimension belonging to the foreground as the prior mask M € R"#*%a_The pseudo code can be written as:

M = Softmax (T * ypgp, avis = —1)[,: 1], 3)

where 7 is set to 10 and Eq. (3) is similar to the inference process of Eq. (2) in the main paper. Finally, according to [14],
M is then processed by the min-max normalization and concatenated with the middle-level features for yielding the final
prediction y.

However, the high-level features are fixed in the original training scheme [14] in order to maintain high generalization
ability to unseen classes, hence the updated prototypes piapl (t € {fg,bg}) are less adaptive. We alternatively make the
backbone trainable to be able to be benefited by the proposed CAPL, and the comparison is shown in Table 2 where simply
letting the backbone trainable causes considerable 1-shot performance deduction as shown by the results of PFENet" and
PFENet*, while the average 5-shot performance of PFENet* is close to that of the default configuration. Contrarily, CAPL
significantly improves the baseline model PFENet* and the final model PFENet*+CAPL considerably surpasses the original
one in terms of both 1- and 5-shot settings, manifesting its effectiveness.

Further, we investigate whether CAPL is conducive to the middle-level features in Table 2, but results of ‘PFENet* + CAPL
+ CAPL,,;4’ show that the middle-level features are less informative than the high-level ones and thus the performance is
degraded by further applying CAPL to the middle-level features that are less semantic sensitive. Also, noises contained
in the middle-level features might worsen the representation power of the newly formed prototypes, causing performance
deduction.



1-shot 5-shot

Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
PFENet 61.7 69.5 554 56.3 60.8 63.1 70.7 55.8 57.9 61.9
PFENet" 61.0 69.7 57.9 56.5 61.3 62.5 70.4 58.5 57.8 62.3
PFENet" + CAPL 60.5 68.9 58.3 56.2 61.0 61.7 70.2 59.3 57.0 62.1
PFENet* 53.0 66.7 58.8 50.7 57.3 60.2 70.6 62.6 56.5 62.5
PFENet* + CAPL,,,;4 52.8 67.3 60.4 50.4 57.7 59.9 70.9 63.5 56.4 62.7
PFENet* + CAPL 61.4 67.6 64.0 55.7 62.2 66.7 72.0 68.1 61.6 67.1
PFENet* + CAPL + CAPL,,,;4 60.1 68.3 63.9 55.0 61.8 64.7 72.0 68.5 61.5 66.6

Table 2. Ablation study on applying CAPL to models in FS-Seg. PFENet denotes the results reported in the original paper. PFENet! is
reproduced by following the default configuration of PFENet [ 4] where the backbone is fixed. PFENet* and the models implemented with
CAPL are reproduced by our training configuration. The backbone parameters of PFENet™ are trainable. It is worth noting that, because
the CAPL requires updating the backbone parameters, CAPL can be only applied to PFENet™ whose backbone parameters are not fixed.
CAPL,,;q means CAPL is applied to the middle-level features to yield enhanced prototypes.

1.3. Transferring FS-Seg Models to GFS-Seg

In the original codes of CANet [17], SCL [16] and PFENet [14], the final classifier consists of two output channels.
The following Softmax layer can well tackle the foreground and background segmentation task, but it causes difficulties
for multi-class segmentation tasks in GFS-Seg because the foreground confidence cannot be directly compared between
different locations. Therefore, we accordingly set the final output channel as one and replace the following Softmax layer
with a Sigmoid layer to adapt these models to GFS-seg. Results in Table 3 show that this modification does not adversely
affect the performance of CANet, SCL and PFENet in FS-Seg.

1-shot 5-shot
Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
CANet 52.5 65.9 51.3 51.9 554 55.5 67.8 51.9 532 57.1
CANet* 53.6 67.9 54.3 49.0 56.2 55.4 68.4 54.3 50.6 57.2
PFENet 61.7 69.5 554 56.3 60.8 63.1 70.7 55.8 57.9 61.9
PFENet™* 61.0 69.7 57.9 56.5 61.3 62.5 70.4 58.5 57.8 62.3
SCL 63.0 70.0 56.5 577 61.8 64.5 70.9 57.3 58.7 62.9
SCL* 63.2 69.5 55.9 58.1 61.7 64.8 70.3 57.7 58.0 62.7

Table 3. Reproduced results of PFENet, CANet, SCL and PANet in the setting of FS-Seg. Results marked with * are reproduced by us.

1.4. Ablation study of GFS-Seg models on COCO.

The effectiveness of CAPL (DECE + SCE) on COCO-20" is shown in Table 4 where the conclusions obtained on Pascal-5°
still hold — DQCE and SCE are complementary. Similarly, worse results are yielded by DQCE-Sw because the new classifier
is controlled by untrustworthy p%? . Thank you and the ablation study and analysis are added to the revision.

qry-
1-shot 5-shot
Methods MLP Cos Base Novel Total Base Novel Total
Baseline N/A N/A 36.68 5.84 29.06 36.91 7.26 29.59
DQCE v - 43.84 6.84 34.70 44.42 10.74 3591
DQCE - v 44.14 7.22 35.02 44.86 10.35 36.34
DQCE-Sw - v 16.33 5.45 13.65 17.21 6.49 14.93
SCE v - 41.30 7.24 32.89 4273 9.29 34.48
SCE - v 40.64 7.36 32.42 42.05 9.81 34.09
SCE-Sw - v 41.14 7.47 32.83 43.30 9.98 35.07
CAPL N/A N/A 44.61 7.05 35.46 45.24 11.05 36.80

Table 4. Ablation study on COCO-20".

2. Alternative Prototype Fusion Strategies

Impressive improvement has been achieved in AMP [13] by fusing new proxies with the previously learned class signa-
tures. Though both CAPL and AMP use weight imprinting and weighted sum for the base class, CAPL’s method differs in
two aspects: 1) AMP involves an additional search after training for a fixed ~ that is shared by the weighted summations



Figure 1. Visual results of t-SNE. Triangles, stars and hexagons are the classifier weights of the baseline, SCE and SCE+DQCE, respec-
tively. Small circles are query features.

of all classes, while our weighting factor is adaptive to different classes because it is conditioned on the input prototypes
without additional searching epochs when the training is finished. 2) The weighted summation is only performed at the novel
class registration phase in AMP and the model is trained in a normal fashion, but our model meta-learns the behavior during
training to better accomplish the context enrichment. Therefore the idea of AMP lies between our baseline and CAPL-Te
that incorporates the class representation update during the novel class registration phase with a fixed weighting factor, i.e.,
the converged v of MLP in CAPL.

To support the discussion above, we show experiments in Table 5 where all results are in the setting of GFS-Seg. Con-
cretely, models IV and VIII represent SCE/DQCE whose y are determined by the fixed value searched by AMP [13]. Sim-
ilarly, models V and IX incorporate the SCE/DQCE contextual enrichment strategies but their «y are set to the converged
values of models II and VI respectively.

As for SCE, we can observe that even though models IV and V both use the fixed «y values, ‘Convg’ outperforms ‘AMP’
because the former is the converged weighting factor that is conditioned on the different input class representations and got
through the meta-training phase of CAPL. As the converged v may not fit the early stage of training, ‘Convg’ (model V) gets
sub-optimal results compared to ‘MLP’(model II). However, as MLP is leaning towards minimizing the potential negative
impacts brought by the query feature in DQCE, MLP is even less effective than AMP, so the converged values of v, also
yield inferior performance as shown by model IX. The final CAPL (model X) combines SCE (MLP) and DQCE (Cos).

1-shot 5-shot
ID Methods o Base Novel Total Base Novel Total
I Baseline N/A 60.47 14.55 49.54 61.88 16.68 51.12
I SCE MLP 62.17 17.88 51.63 63.62 20.50 53.35
111 SCE Cos 59.87 16.80 49.62 61.60 19.92 51.68
v SCE AMP 61.35 14.98 50.31 63.07 17.72 52.27
\% SCE Convg. 61.40 15.72 50.54 63.59 18.38 52.82
VI DQCE MLP 63.25 15.42 51.82 64.12 20.37 53.70
VII DQCE Cos 64.16 15.39 52.55 65.26 21.32 54.80
VIII DQCE AMP 63.81 15.25 52.25 64.39 20.35 53.90
IX DQCE Convg. 63.07 15.03 51.64 63.75 20.15 53.37
X CAPL - 65.48 18.85 54.38 66.14 22.41 55.72

Table 5. Comparison of contextual enrichment strategies. ‘AMP’ represents using the fixed values searched by [13]. ‘Convg’ means y
is set to the converged value of model-VI whose ~ is determined by MLP. Model I is the baseline (PSPNet with ResNet-50) and CAPL
(model X) combines SCE (MLP) and DQCE (Cos).

3. Use of Existing Assets
We gratefully thank the creators of the following assets that are very helpful for our project.

e PyTorch 1.6.0 [10]: https://github.com/pytorch/pytorch (The license is available at https:
//github.com/pytorch/pytorch/blob/master/LICENSE)

* PASCAL-VOC 2012 [4]: http://host.robots.ox.ac.uk/pascal/VOC/voc2012 (The use of image
respects the term of use of Flickrat https://www.flickr.com/help/terms)

¢ SBD [5]: http://home.bharathh.info/pubs/codes/SBD/download.html (The use of image
respects the term of use of Flickrat https://www.flickr.com/help/terms)


https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
http://host.robots.ox.ac.uk/pascal/VOC/voc2012
https://www.flickr.com/help/terms
http://home.bharathh.info/pubs/codes/SBD/download.html
https://www.flickr.com/help/terms

¢ COCO2014[8]: https://cocodataset.orqg (Creative Commons Attribution 4.0 License)
e PSPNet [18]: https://github.com/hszhao/semseqg (MIT License)

e DeepLab-V3 [3]: https://github.com/pytorch/vision/blob/main/torchvision/models/s
egmentation/deeplabv3.py (BSD-3-Clause License)

e CANet[I7]: https://github.com/icoz69/CaNet (No license published)

e PANet[15]: https://github.com/kaixin96/PANet (No license published)

e SCL[I6]: https://github.com/zbf1991/SCL (No license published)

e PFENet[14]: https://github.com/dvlab-research/PFENet (No license published)

* RePRI [1]: https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation (No license
published)

* HSNet [9]: https://github.com/juhongm999/hsnet (No license published)

4. Visual Illustration

By incorporating DQCE, the classifier dynamically exploits specific contextual hints from each query sample individually,
further rectifying the prototypes obtained from support features via SCE. The rectification process is illustrated in Figure 1
where different colors represent different classes. From the t-SNE visualizations, we can observe that the proposed SCE and
DQCE are complementary, and are both conducive to the prototype correction.

Visual examples of FS-Seg and GFS-Seg are shown in Figures 2 and 3 respectively. The major issue of the baselines
without CAPL is that their results are more likely to be negatively affected by the prototypes of the other classes. Differently,
with the enriched context information, CAPL yields fewer false predictions than the baseline. Both our baseline method and
CAPL can be easily applied to any normal semantic segmentation model without structural constraints.


https://cocodataset.org
https://github.com/hszhao/semseg
https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py
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https://github.com/icoz69/CaNet
https://github.com/kaixin96/PANet
https://github.com/zbf1991/SCL
https://github.com/dvlab-research/PFENet
https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation
https://github.com/juhongm999/hsnet
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Image Baseline CAPL Baseline CAPL

Figure 3. Visual comparison between the baseline and CAPL. Novel classes are bus, car, cat, chair and cow. The white color stands for the
label ‘Do Not Care’.



