AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval

Supplementary Material

A. Proofs
A.l. Definition of Axioms

We formally define the definition of each axiom and each
measure in this supplementary material.

Axiom 1 (Invariance against Top-k Non-Best Moment
(INV-k).). For any query q € Q and any rank position k
(k > 1), and for all systems o and o' such that ¢’ differs
from o only for the k-th moment in the ranked lists for q,
w(Q,0) = nu(Q,0’) holds when the k-th moments satisfy
the following conditions.

Condition A.1 (Inequality of relevance scores). The rel-
evance scores of the k-th moment in o, and oy satisfy

r(oq(k)) <r(og(k)).

Condition A.2 (Non-maximum relevance score of the
top-k moment). The k-th moment returned by system o
is less relevant than that returned by system o¢’. That is,
r(0}(k)) < mas <<k 7(0} (7).
Axiom 2 (Strict Monotonicity for Top-k Best Moment
(MON-K).). For any query q € Q and any rank posi-
tion k, and for all systems o and o’ such that o' differs
from o only for the k-th moment in the ranked lists for q,
w(Q,0) < wu(Q, ') holds whenever the k-th moment satis-
fies Condition A.1 and the following condition.

Condition A.3 (Maximum relevance score of the top-k mo-
ment). The k-th moment returned by ¢’ is the most relevant
within the top k. That is, 7 (o7 (k)) > max; < < 7(0g (k')
ifk>1.

Note that, Condition A.3 is necessary to avoid the con-
tradiction between INV-k and MON-k.

A.2. Properties of R@Q K, 0

Mean R@ K, 6, is defined as the ratio of queries for
which a system successfully retrieves at least one relevant
moment with a sufficient IoU with respect to threshold 6 [1].

Mean RQK, 6(Q, o)
K
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Property 1. Mean R@ K, 0 does not satisfy MON-k (Ax-
iom 2).

Proof. For two systems o and ¢’ such that ¢’ differs from o
only for k-th moment in the ranked list for g, the difference
of the measurements can be expressed as follows:

Mean RQK, 6(Q, o) — Mean RQK, 0(Q, 0")
1
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where C' = Z{(SjSKAj;ék 1{r(c(q);) > 6}. Here, when
r(oy(k)) < 6 holds, it also holds that 7(oy(k)) < 0
by utilising Condition A.1. Then, the k-th moments do
not contribute to the measurements, 1 {r(c,(k)) > 0} =
1 {r(o}(k)) > 6} = 0. Here, because 6§ > r(o/(k)) >
max; <<k 7(0y(j)) holds by Condition A.3, there is no
moment that has a sufficient relevance score in the ranked
lists 0, and o) and C = 0 holds. Therefore, com-
bining these and Eq. (2), when r(o;(k)) < 6, we ob-
tain Mean RQK, 6(Q,0) = Mean RQK, §(Q, ¢’), which

proves our proposition. O

This problem results from the thresholding of temporal
IoUs in the measure. This leads to the information loss of
the retrieval effectiveness by binarizing the relevance score
of moments and thus to the insensitivity of the measure.
Property 1 suggests that the measure may ignore the im-
provement of systems when utilising a large value of 6.

Remarkably, R@ K, § obviously does not satisfy MON-
k even with assuming 7(o4(k)) > 6 in the case of K >
1; when r(o4(j)) > 0 holds for any rank position j
(1 <j < KANjJ #k),C > 1inEq. (2) holds,
and thus Mean RQK,0(Q,0) — Mean RQK,0(Q,c') =
(1/1Q)(1 — 1) = 0 holds. Therefore, setting a small value
of 8, it also leads to information loss.

Property 2. Mean R@ K, 0 satisfies INV-k (Axiom 1).

Proof. Because we may assume that Condition A.2 holds,
when r(og(k)) > 0, there is at least one moment in a
position j that satisfies (o7 (j)) > r(og(k)) > 6, and
thus, C > 1 holds in Eq. (2). When r(a;(k)) < 0, the
k-th moment does not contribute to the measurement, and
1 {r(a)(k)) > 6} = 0holds. Therefore, by utilising Con-
dition A.1, r(aq(k)) < (o (k)) < 0, we have,

Mean RQK, 6(Q, o) — Mean RQK, 0(Q, 0")
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regardless of (0" (q)) > 6 orr(o’(q)) < 6. Thus, we ob-
tain Mean RQK, 0(Q,0) = Mean RQK, 0(Q, '), which
proves our proposition. [

This result suggests that the thresholding and indicator
function in R@ K, 0 play a vital role in ensuring invariance
against the redundant moments in the lower rank positions.
Although these mechanisms are indispensable as the invari-
ance is required under the problem settings of VMR, they
are the main causes of information loss (See Property 1).

A.3. Properties of AP Measures

Using the average precision (AP) measure is one ap-
proach to consider the rank of relevant moments [4]. AP
and Mean AP (a.k.a. mAP) can be expressed as follows:

APQK, 6(q,0)
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As the AP measure is for binary relevance grades, it also
requires a thresholding process for IoU values.

Property 3. Mean AP@K, 0 does not satisfy INV-k (Ax-
iom 1).

Proof. For two systems o and ¢’ such that ¢’ differs from o
only for &’-th moment in the ranked list for ¢, the difference
of the measurements can be expressed as follows:

Mean APQK, 9(Q o') — Mean APQK, 0(Q, o)
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(L{r (o (k") > 0)} — 1{r(oq(kK") > 0)}).
(6)

To derive the second equality, we assume that the top-
(k" — 1) ranked lists of o, and oy, are identical, and the
partial ranked lists from the (k' 4+ 1)-th position are also
identical. When (o (k')) > 6 > r(o,(k")) holds, we have
the following: 1{r (o7 (k") > 0)} — 1{r(oy (k") > 0)} =
1 — 0 = 1. Therefore, we can obtain the following:

Mean APQK, 0(Q,c") — Mean APQK, 0(Q, o)

QIR =k
<= Mean APQK,0(Q,¢’) > Mean APQK, 0(Q, o).
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AP cannot handle the redundant moments in a ranked list
because each top-K ranked relevant moment contributes to
the measurement as an equally relevant one; in other words,
AP is concerned with the number of the relevant moments
in a ranked list. It suggests that a system without NMS can
unfairly take an advantage in the evaluation based on AP.

Property 4. Mean AP@ K, 0 does not satisfy MON-k (Ax-
iom 1).

Proof. In Eq. (6), when 0 > (o (k")) > r(o4(k')) and
Condition A.3 hold, 1{r(oy (k') > 0)} — 1{r(o,(k") >
0)} = 0 — 0 = 0. Therefore, we obtain the following:

Mean APQK, 0(Q, o')
=0
<= Mean APQK, 0(Q, ")

— Mean APQK, 6(Q, o)

= Mean APQK, 0(Q, o).

O

Although AP is rank-sensitive, it has the threshold 6 as
in R@K 6§ and can ignore the improvement of IoU values
of relevant moments.

A 4. Properties of DCG-type Measures

The naive approach to remove thresholding parameter 6
while considering the rank positions of relevant moments is
to utilise the measures for multiple relevance grades, such as
normalised discounted cumulative gain (nDCG) [2] because
an IoU value can be considered as a continuous relevance
score. A DCG-type measure can be expressed as follows:

K
DCGAK (q,0) =Y 9(r(o(9):)) (7)

K
Mean DCGQK (Q, o) = L Z w]iq)i)), (3)

where g(r) > 0 and d(k) > 0 denotes the gain and dis-
counting functions that are strictly monotonically increas-
ing with respect to the relevance score r and rank position
k, respectively. However, any DCG-type measure obviously
does not satisfy INV-k (Axiom 1).

Property 5. Mean DCG@ K does not satisfy INV-k (Ax-

iom 1).

Proof. For any query ¢ € Q and any rank position k, and
for all systems o and ¢’ such that ¢’ differs from o for only
the k-th moment in the ranked lists for ¢, we can obtain the



following equation.

Mean DCG@K(Q 0’)
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Based on Condition A.1, 7(04(k)) < 7(0(k)) and the strict
monotonicity of the gain function g(-), we have the follow-
ing: Mean DCGQK (¢’) — Mean DCGQK (¢) > 0, which
completes the proof. O

Because DCG@ K is defined as the sum of element-wise
discounted gain values of moments in a ranked list, it can-
not handle the redundant moments in a ranked list appropri-
ately. Moreover, it is difficult to utilise DCG-type measures
with normalisation (nDCG) for VMR as the definition of
the ideal list is not trivial owing to INV-k; thus, DCG@ K
is under-normalised and can take a large value for a single

query.
Property 6. Mean DCG@ K satisfies MON-k (Axiom ).

Proof. In Eq. (9), by the strict monotonicity of the gain
function ¢(-) and non-negativity of the discount func-
tion d(-), g(r(oy(k))) — g(r(oq(k))) > 0, and thus,
Mean DCGQK (0') — Mean DCGQK (o) > 0 always
holds, which completes the proof. O

DCG@K is thresholding-free and rank-sensitive, and
thereby satisfies MON-k; however, due to these properties,
it does not satisfies INV-k.

By considering the properties of R@ K, § and DCG@ K,
it is challenging for conventional information retrieval mea-
sures to satisfy INV-k and MON-k simultaneously.

A.S. Properties of AxIoU Measure

In this section, we demonstrate that AxIoU is
thresholding-free and rank-sensitive while satisfying both
INV-k and MON-k. AxIoU can be expressed as follows:

=

1
AxIOUQK (g, o) = 9 11rgja§kr(oq(3)) (10)
Mean AxIoUQK (Q, o)
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Property 7. Mean AxloU@ K satisfies INV-k (Axiom 1).
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Proof. For two systems ¢ and ¢’ such that ¢’ differs from
o only for the k’-th moment in the ranked list for g,

Mean AxIoUQK (Q, o)
K
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— Mean AxIoUQK (Q, o)

By utilising (o7, (k")) < maxi<j<p 7(j) and (0,4 (k')) <
r(og(k')), it holds that r(o, (k")) < maxi<j<r 7(04(5))
because the top-(k’ — 1) lists of o and o’ are identical.
Therefore, maxi<;<k’ T‘(U(lz(])) = maxi<;j<k’ T(O'q(j))
holds. In addition, because the partial ranked lists of o
and ¢’ from the (k' + 1)-th position are identical, we have
max; <<k (0, (j)) = maxi<j<k7(04(j)) for any posi-
tion k(1 < k § K). Therefore, we have the following:

EK: (maX r(og(4)) — max T(aq(]))) —0

Prst 1<5;<k 1<5<k

<= Mean AxIoUQK (Q, ¢’) = Mean AxIoUQK (Q, o).

O

AxIoU determines the contribution of the relevant mo-
ments in a ranked list by comparing the relevance of these
moments. Therefore, it can handle the redundant moments
without any binarisation and thresholding processes.

Property 8. Mean AxloU@ K satisfies MON-k (Axiom 2).

Proof. For two systems o and ¢’ such that ¢’ differs from o
only for k’-th moment in the ranked list for g, the evaluation
measures can be expressed as follows:

Mean AonU@K(Q o)
oI Z (m

1 ,
|QK<< (K)) = max r(oq(7))

— Mean AxIoUQK (Q, o)

1<5<k
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In the second equality, we utilised 7(og(k')) =
max; <<k 7(0g(j)) to derive the first term in
the right hand side. By utilising r(oj (k")) >
maxicicp (@) and r(oh(k) > (oK),
r(og(k')) — maxi<j<p 7(04(4)) > 0 holds in the
right hand side of the second equality. For the second
term, because we may assume that the partial ranked lists
of o and ¢’ from the (k' + 1)-th position are identical,

maxi<;<k 7"(0'(/1(])) > maxi<; <k T‘(Uq(j)) holds for any



position k (k' < k < K). Thus, the following inequality

holds.
1ot
r(aq(k ) — 1233;7«(%(])) >0
) — >
/\kzk;_l <1r£ja<xk71 (.7)) 1@?227"(0@(]))) >0

<= Mean AxIoUQK (Q, ¢’) > Mean AxIoUQK (Q, o),
which completes the proof. O

As a summary, AxloU reflects the rank positions of the
relevant moments in a ranked list as in AP and considers
IoU values as in DCG, while it can handle the redundant
moments as in R@ K, 6.

B. Analysis of Number of Tied Results

To demonstrate the behaviours of R@K,6 and
AxIoU@ K, we investigate the number of queries for which
the 6 systems have the exactly same score for each VMR
measure; we define the ratio of such queries in all test
queries as all-tied query ratio of a measure. Figure 1|
shows the all-tied query ratio of each measure on Charades-
STA and ActivityNet, respectively. From Figure 1, the
R@ K, 0 instances with relaxed or demanding settings, such
as R@10,0.3, R@1,0.7, show higher all-tied query ratios
than the other instances. It indicates that these measures
cannot distil any information from the evaluation results
based on a large number of queries. R@5, 0.7 performs well
in both Charades-STA and ActivityNet. On the other hand,
the AxIoU@ K instances show substantially lower all-tied
query ratios for K = 1,5,10. It is remarkable that, with
a larger K, AxIoU@K performs well whereas R@ K, 6
with & = 0.3,0.5 becomes worse. Probably, it is because
AxIoU@K can leverage the information of the lower po-
sitions in ranked lists owing to its rank-sensitivity, whereas
R@K, #, which is a set retrieval measure, becomes insen-
sitive when with a large K and requires a large 6 to detect
the difference of systems. This suggests that the setting of
0 is rather difficult when K is large such as in the TVR
dataset [3]; an extremely large § may be required although
it can make difficult queries uninformative.

C. On the Stability to Label Ambiguity

To show the stability to label ambiguity of the measures,
we showed the behaviour of the measures through numer-
ical experiments (Section 6.4). In this section, we discuss
the effect of the IoU thresholding on the estimation stability.

We here show the case of K = 1 for a simple example.
Let 7 be the IoU value of the top-1 moment for the true
unobservable ground truth and 7 be that for the noisy ground
truth. Under a Gaussian noise model # = r + ¢, where
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Figure 1. All-tied query ratio of each measure.
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Figure 2. Effect of 6 and ~y on estimation errors.

€ ~ N(0,+?%), noisy IoU # also obeys a normal distribution
7 ~ N(r,+?). The expected difference between the true
and observed AxIoU@1 (i.e. bias) is obtained as E[r—7] =
r—E;[7]. Hence, AxIoU@1 is unbiased (i.e. E;[r —#] = 0)
because 7 is an unbiased estimator of r (i.e. Ex[f] = 7). The
variance of AxIoU@1 is exactly that of 7 (i.e. V[#] = ~?).
On the other hand, the bias of R@1, § can be obtained as

Eq[I{7 > 0} — 1{r > 0}] = E:[1{F > 0}] — 1{r > 6}

= P(t > 0) - 1{r > 0}.

If & < r holds, because the true R@1, 6 is one, the bias is
then P(7# > 0)—1 = —P(# < ). If § > r holds, the bias is
P(# > 0). Therefore, R@1, 6 is statistically biased; that is,
it has the error even in the expectation. Because 1{7 > 6}
obeys the Bernoulli distribution Bern(P (7 > 6)), The vari-
ance of R@1,0 is P(# > 0)P(+ < 6), which depends
on # and ~. Figure 2 shows the theoretical (squared) bias,
variance and mean squared error (MSE) of AxloU@1 and
R@1, 6 for different 6 and y under » = 0.5. We can ob-
serve that both AxloU@1 and R@1, § have large estima-
tion errors (i.e. MSE) when noise level v is large. In addi-
tion to this, R@1, 0 suffers from a severe error even with



small ~, particularly when 6 is close to » = 0.5. This is
an undesirable property because we often need to discrim-
inate competitive VMR methods and thus to use 6 around
the boundary, which leads to estimation errors under label
noise.
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