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A. Proofs

A.1. Definition of Axioms

We formally define the definition of each axiom and each

measure in this supplementary material.

Axiom 1 (Invariance against Top-k Non-Best Moment

(INV-k).). For any query q ∈ Q and any rank position k
(k > 1), and for all systems σ and σ′ such that σ′ differs

from σ only for the k-th moment in the ranked lists for q,

µ(Q, σ) = µ(Q, σ′) holds when the k-th moments satisfy

the following conditions.

Condition A.1 (Inequality of relevance scores). The rel-

evance scores of the k-th moment in σq and σ′
q satisfy

r(σq(k)) < r(σ′
q(k)).

Condition A.2 (Non-maximum relevance score of the

top-k moment). The k-th moment returned by system σ
is less relevant than that returned by system σ′. That is,

r(σ′
q(k)) ≤ max1≤j<k r(σ

′
q(j)).

Axiom 2 (Strict Monotonicity for Top-k Best Moment

(MON-k).). For any query q ∈ Q and any rank posi-

tion k, and for all systems σ and σ′ such that σ′ differs

from σ only for the k-th moment in the ranked lists for q,

µ(Q, σ) < µ(Q, σ′) holds whenever the k-th moment satis-

fies Condition A.1 and the following condition.

Condition A.3 (Maximum relevance score of the top-k mo-

ment). The k-th moment returned by σ′ is the most relevant

within the top k. That is, r(σ′
q(k)) > max1≤k′<k r(σ

′
q(k

′))
if k > 1.

Note that, Condition A.3 is necessary to avoid the con-

tradiction between INV-k and MON-k.

A.2. Properties of R@K, θ

Mean R@K, θ, is defined as the ratio of queries for

which a system successfully retrieves at least one relevant

moment with a sufficient IoU with respect to threshold θ [1].

Mean R@K, θ(Q, σ)

=
1

|Q|

∑

q∈Q

1

{

K
∑

k=1

1 {r(σq(k)) > θ} > 0

}

. (1)

Property 1. Mean R@K, θ does not satisfy MON-k (Ax-

iom 2).

Proof. For two systems σ and σ′ such that σ′ differs from σ
only for k-th moment in the ranked list for q, the difference

of the measurements can be expressed as follows:

Mean R@K, θ(Q, σ)− Mean R@K, θ(Q, σ′)

=
1

|Q|
1 {1 {r(σ(q)k) > θ}+ C > 0}

−
1

|Q|
1 {1 {r(σ′(q)k) > θ}+ C > 0} , (2)

where C =
∑K

1≤j≤K∧j ̸=k 1 {r(σ(q)j) > θ}. Here, when

r(σ′
q(k)) ≤ θ holds, it also holds that r(σq(k)) ≤ θ

by utilising Condition A.1. Then, the k-th moments do

not contribute to the measurements, 1 {r(σq(k)) > θ} =
1
{

r(σ′
q(k)) > θ

}

= 0. Here, because θ ≥ r(σ′
q(k)) ≥

max1≤j<k r(σ
′
q(j)) holds by Condition A.3, there is no

moment that has a sufficient relevance score in the ranked

lists σq and σ′
q and C = 0 holds. Therefore, com-

bining these and Eq. (2), when r(σ′
q(k)) ≤ θ, we ob-

tain Mean R@K, θ(Q, σ) = Mean R@K, θ(Q, σ′), which

proves our proposition.

This problem results from the thresholding of temporal

IoUs in the measure. This leads to the information loss of

the retrieval effectiveness by binarizing the relevance score

of moments and thus to the insensitivity of the measure.

Property 1 suggests that the measure may ignore the im-

provement of systems when utilising a large value of θ.

Remarkably, R@K, θ obviously does not satisfy MON-

k even with assuming r(σq(k)) > θ in the case of K >
1; when r(σq(j)) > θ holds for any rank position j
(1 ≤ j ≤ K ∧ j ̸= k), C ≥ 1 in Eq. (2) holds,

and thus Mean R@K, θ(Q, σ) − Mean R@K, θ(Q, σ′) =
(1/|Q|)(1− 1) = 0 holds. Therefore, setting a small value

of θ, it also leads to information loss.

Property 2. Mean R@K, θ satisfies INV-k (Axiom 1).

Proof. Because we may assume that Condition A.2 holds,

when r(σ′
q(k)) > θ, there is at least one moment in a

position j that satisfies r(σ′
q(j)) ≥ r(σ′

q(k)) > θ, and

thus, C ≥ 1 holds in Eq. (2). When r(σ′
q(k)) ≤ θ, the

k-th moment does not contribute to the measurement, and

1
{

r(σ′
q(k)) > θ

}

= 0 holds. Therefore, by utilising Con-

dition A.1, r(σq(k)) ≤ r(σ′
q(k)) ≤ θ, we have,

Mean R@K, θ(Q, σ)− Mean R@K, θ(Q, σ′)

=
1

|Q|
1 {C > 0} −

1

|Q|
1 {C > 0} = 0, (3)



regardless of r(σ′(q)k) > θ or r(σ′(q)k) ≤ θ. Thus, we ob-

tain Mean R@K, θ(Q, σ) = Mean R@K, θ(Q, σ′), which

proves our proposition.

This result suggests that the thresholding and indicator

function in R@K, θ play a vital role in ensuring invariance

against the redundant moments in the lower rank positions.

Although these mechanisms are indispensable as the invari-

ance is required under the problem settings of VMR, they

are the main causes of information loss (See Property 1).

A.3. Properties of AP Measures

Using the average precision (AP) measure is one ap-

proach to consider the rank of relevant moments [4]. AP

and Mean AP (a.k.a. mAP) can be expressed as follows:

AP@K, θ(q, σ) :=
1

K

K
∑

k=1

1

k

k
∑

j=1

1{r(σq(j) > θ)}. (4)

Mean AP@K, θ(Q, σ)

:=
1

|Q|

∑

q∈Q

1

K

K
∑

k=1

1

k

k
∑

j=1

1{r(σq(j) > θ)}. (5)

As the AP measure is for binary relevance grades, it also

requires a thresholding process for IoU values.

Property 3. Mean AP@K, θ does not satisfy INV-k (Ax-

iom 1).

Proof. For two systems σ and σ′ such that σ′ differs from σ
only for k′-th moment in the ranked list for q, the difference

of the measurements can be expressed as follows:

Mean AP@K, θ(Q, σ′)− Mean AP@K, θ(Q, σ)

=
1

|Q|K

K
∑

k=1

1

k

k
∑

j=1

(

1{r(σ′
q(j) > θ)} − 1{r(σq(j) > θ)}

)

=
1

|Q|K

K
∑

k=1

1

k

(

1{r(σ′
q(k

′) > θ)} − 1{r(σq(k
′) > θ)}

)

.

(6)

To derive the second equality, we assume that the top-

(k′ − 1) ranked lists of σq and σ′
q are identical, and the

partial ranked lists from the (k′ + 1)-th position are also

identical. When r(σ′
q(k

′)) > θ ≥ r(σq(k
′)) holds, we have

the following: 1{r(σ′
q(k

′) > θ)} − 1{r(σq(k
′) > θ)} =

1− 0 = 1. Therefore, we can obtain the following:

Mean AP@K, θ(Q, σ′)− Mean AP@K, θ(Q, σ)

=
1

|Q|K

K
∑

k=1

1

k
> 0

⇐⇒ Mean AP@K, θ(Q, σ′) > Mean AP@K, θ(Q, σ).

AP cannot handle the redundant moments in a ranked list

because each top-K ranked relevant moment contributes to

the measurement as an equally relevant one; in other words,

AP is concerned with the number of the relevant moments

in a ranked list. It suggests that a system without NMS can

unfairly take an advantage in the evaluation based on AP.

Property 4. Mean AP@K, θ does not satisfy MON-k (Ax-

iom 1).

Proof. In Eq. (6), when θ ≥ r(σ′
q(k

′)) > r(σq(k
′)) and

Condition A.3 hold, 1{r(σ′
q(k

′) > θ)} − 1{r(σq(k
′) >

θ)} = 0− 0 = 0. Therefore, we obtain the following:

Mean AP@K, θ(Q, σ′)− Mean AP@K, θ(Q, σ)

= 0

⇐⇒ Mean AP@K, θ(Q, σ′) = Mean AP@K, θ(Q, σ).

Although AP is rank-sensitive, it has the threshold θ as

in R@K, θ and can ignore the improvement of IoU values

of relevant moments.

A.4. Properties of DCG-type Measures

The naÈıve approach to remove thresholding parameter θ
while considering the rank positions of relevant moments is

to utilise the measures for multiple relevance grades, such as

normalised discounted cumulative gain (nDCG) [2] because

an IoU value can be considered as a continuous relevance

score. A DCG-type measure can be expressed as follows:

DCG@K(q, σ) :=

K
∑

k=1

g(r(σ(q)i))

d(k)
. (7)

Mean DCG@K(Q, σ) :=
1

|Q|

∑

q∈Q

K
∑

k=1

g(r(σ(q)i))

d(k)
, (8)

where g(r) ≥ 0 and d(k) > 0 denotes the gain and dis-

counting functions that are strictly monotonically increas-

ing with respect to the relevance score r and rank position

k, respectively. However, any DCG-type measure obviously

does not satisfy INV-k (Axiom 1).

Property 5. Mean DCG@K does not satisfy INV-k (Ax-

iom 1).

Proof. For any query q ∈ Q and any rank position k, and

for all systems σ and σ′ such that σ′ differs from σ for only

the k-th moment in the ranked lists for q, we can obtain the



following equation.

Mean DCG@K(Q, σ′)− Mean DCG@K(Q, σ)

=
1

|Q|

∑

q∈Q

K
∑

j=1

g(r(σ′
q(j)))

d(j)
−

1

|Q|

∑

q∈Q

K
∑

j=1

g(r(σq(j)))

d(j)

=
1

|Q|

g(r(σ′
q(k)))− g(r(σq(k)))

d(k)
. (9)

Based on Condition A.1, r(σq(k)) < r(σ′
q(k)) and the strict

monotonicity of the gain function g(·), we have the follow-

ing: Mean DCG@K(σ′) − Mean DCG@K(σ) > 0, which

completes the proof.

Because DCG@K is defined as the sum of element-wise

discounted gain values of moments in a ranked list, it can-

not handle the redundant moments in a ranked list appropri-

ately. Moreover, it is difficult to utilise DCG-type measures

with normalisation (nDCG) for VMR as the definition of

the ideal list is not trivial owing to INV-k; thus, DCG@K
is under-normalised and can take a large value for a single

query.

Property 6. Mean DCG@K satisfies MON-k (Axiom 1).

Proof. In Eq. (9), by the strict monotonicity of the gain

function g(·) and non-negativity of the discount func-

tion d(·), g(r(σ′
q(k))) − g(r(σq(k))) > 0, and thus,

Mean DCG@K(σ′) − Mean DCG@K(σ) > 0 always

holds, which completes the proof.

DCG@K is thresholding-free and rank-sensitive, and

thereby satisfies MON-k; however, due to these properties,

it does not satisfies INV-k.

By considering the properties of R@K, θ and DCG@K,

it is challenging for conventional information retrieval mea-

sures to satisfy INV-k and MON-k simultaneously.

A.5. Properties of AxIoU Measure

In this section, we demonstrate that AxIoU is

thresholding-free and rank-sensitive while satisfying both

INV-k and MON-k. AxIoU can be expressed as follows:

AxIoU@K(q, σ) :=
1

K

K
∑

k=1

max
1≤j≤k

r(σq(j)), (10)

Mean AxIoU@K(Q, σ) :=
1

|Q|

∑

q∈Q

1

K

K
∑

k=1

max
1≤j≤k

r(σq(j)).

(11)

Property 7. Mean AxIoU@K satisfies INV-k (Axiom 1).

Proof. For two systems σ and σ′ such that σ′ differs from

σ only for the k′-th moment in the ranked list for q,

Mean AxIoU@K(Q, σ′)− Mean AxIoU@K(Q, σ)

=
1

|Q|K

K
∑

k=k′

(

max
1≤j≤k

r(σ′
q(j))− max

1≤j≤k
r(σq(j))

)

(12)

By utilising r(σ′
q(k

′)) ≤ max1≤j<k′ r(j) and r(σq(k
′)) <

r(σ′
q(k

′)), it holds that r(σq(k
′)) ≤ max1≤j<k′ r(σq(j))

because the top-(k′ − 1) lists of σ and σ′ are identical.

Therefore, max1≤j≤k′ r(σ′
q(j)) = max1≤j≤k′ r(σq(j))

holds. In addition, because the partial ranked lists of σ
and σ′ from the (k′ + 1)-th position are identical, we have

max1≤j≤k r(σ
′
q(j)) = max1≤j≤k r(σq(j)) for any posi-

tion k(1 ≤ k ≤ K). Therefore, we have the following:

K
∑

k=k′

(

max
1≤j≤k

r(σ′
q(j))− max

1≤j≤k
r(σq(j))

)

= 0

⇐⇒ Mean AxIoU@K(Q, σ′) = Mean AxIoU@K(Q, σ).

AxIoU determines the contribution of the relevant mo-

ments in a ranked list by comparing the relevance of these

moments. Therefore, it can handle the redundant moments

without any binarisation and thresholding processes.

Property 8. Mean AxIoU@K satisfies MON-k (Axiom 2).

Proof. For two systems σ and σ′ such that σ′ differs from σ
only for k′-th moment in the ranked list for q, the evaluation

measures can be expressed as follows:

Mean AxIoU@K(Q, σ′)− Mean AxIoU@K(Q, σ)

=
1

|Q|K

K
∑

k=k′

(

max
1≤j≤k

r(σ′
q(j))− max

1≤j≤k
r(σq(j))

)

=
1

|Q|K

(

r(σ′
q(k

′))− max
1≤j≤k′

r(σq(j))

+

K
∑

k=k′+1

(

max
1≤j≤k

r(σ′
q(j))− max

1≤j≤k
r(σq(j))

)

)

(13)

In the second equality, we utilised r(σ′
q(k

′)) =
max1≤j≤k′ r(σ′

q(j)) to derive the first term in

the right hand side. By utilising r(σ′
q(k

′)) >
max1≤j<k′ r(σ′

q(j)) and r(σ′
q(k

′)) > r(σq(k
′)),

r(σ′
q(k

′)) − max1≤j≤k′ r(σq(j)) > 0 holds in the

right hand side of the second equality. For the second

term, because we may assume that the partial ranked lists

of σ and σ′ from the (k′ + 1)-th position are identical,

max1≤j≤k r(σ
′
q(j)) ≥ max1≤j≤k r(σq(j)) holds for any



position k (k′ < k ≤ K). Thus, the following inequality

holds.

r(σ′
q(k

′))− max
1≤j≤k′

r(σq(j)) > 0

∧
K
∑

k=k′+1

(

max
1≤j≤k

r(σ′
q(j))− max

1≤j≤k
r(σq(j))

)

≥ 0

⇐⇒ Mean AxIoU@K(Q, σ′) > Mean AxIoU@K(Q, σ),

which completes the proof.

As a summary, AxIoU reflects the rank positions of the

relevant moments in a ranked list as in AP and considers

IoU values as in DCG, while it can handle the redundant

moments as in R@K, θ.

B. Analysis of Number of Tied Results

To demonstrate the behaviours of R@K, θ and

AxIoU@K, we investigate the number of queries for which

the 6 systems have the exactly same score for each VMR

measure; we define the ratio of such queries in all test

queries as all-tied query ratio of a measure. Figure 1

shows the all-tied query ratio of each measure on Charades-

STA and ActivityNet, respectively. From Figure 1, the

R@K, θ instances with relaxed or demanding settings, such

as R@10, 0.3, R@1, 0.7, show higher all-tied query ratios

than the other instances. It indicates that these measures

cannot distil any information from the evaluation results

based on a large number of queries. R@5, 0.7 performs well

in both Charades-STA and ActivityNet. On the other hand,

the AxIoU@K instances show substantially lower all-tied

query ratios for K = 1, 5, 10. It is remarkable that, with

a larger K, AxIoU@K performs well whereas R@K, θ
with θ = 0.3, 0.5 becomes worse. Probably, it is because

AxIoU@K can leverage the information of the lower po-

sitions in ranked lists owing to its rank-sensitivity, whereas

R@K, θ, which is a set retrieval measure, becomes insen-

sitive when with a large K and requires a large θ to detect

the difference of systems. This suggests that the setting of

θ is rather difficult when K is large such as in the TVR

dataset [3]; an extremely large θ may be required although

it can make difficult queries uninformative.

C. On the Stability to Label Ambiguity

To show the stability to label ambiguity of the measures,

we showed the behaviour of the measures through numer-

ical experiments (Section 6.4). In this section, we discuss

the effect of the IoU thresholding on the estimation stability.

We here show the case of K = 1 for a simple example.

Let r be the IoU value of the top-1 moment for the true

unobservable ground truth and r̂ be that for the noisy ground

truth. Under a Gaussian noise model r̂ = r + ϵ, where
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Figure 1. All-tied query ratio of each measure.
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Figure 2. Effect of θ and γ on estimation errors.

ϵ ∼ N(0, γ2), noisy IoU r̂ also obeys a normal distribution

r̂ ∼ N(r, γ2). The expected difference between the true

and observed AxIoU@1 (i.e. bias) is obtained as Er̂[r−r̂] =
r−Er̂[r̂]. Hence, AxIoU@1 is unbiased (i.e. Er̂[r− r̂] = 0)

because r̂ is an unbiased estimator of r (i.e. Er̂[r̂] = r). The

variance of AxIoU@1 is exactly that of r̂ (i.e. V[r̂] = γ2).

On the other hand, the bias of R@1, θ can be obtained as

Er̂[1{r̂ ≥ θ} − 1{r ≥ θ}] = Er̂[1{r̂ ≥ θ}]− 1{r ≥ θ}

= P (r̂ ≥ θ)− 1{r ≥ θ}.

If θ ≤ r holds, because the true R@1, θ is one, the bias is

then P (r̂ ≥ θ)−1 = −P (r̂ < θ). If θ > r holds, the bias is

P (r̂ ≥ θ). Therefore, R@1, θ is statistically biased; that is,

it has the error even in the expectation. Because 1{r̂ ≥ θ}
obeys the Bernoulli distribution Bern(P (r̂ ≥ θ)), The vari-

ance of R@1, θ is P (r̂ ≥ θ)P (r̂ < θ), which depends

on θ and γ. Figure 2 shows the theoretical (squared) bias,

variance and mean squared error (MSE) of AxIoU@1 and

R@1, θ for different θ and γ under r = 0.5. We can ob-

serve that both AxIoU@1 and R@1, θ have large estima-

tion errors (i.e. MSE) when noise level γ is large. In addi-

tion to this, R@1, θ suffers from a severe error even with



small γ, particularly when θ is close to r = 0.5. This is

an undesirable property because we often need to discrim-

inate competitive VMR methods and thus to use θ around

the boundary, which leads to estimation errors under label

noise.
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