A. Dataset details

In the following, we provide additional details on our
dataset. For once, we summarize the metadata complement-
ing our raw sensory data in Appendix A.1. In Appendix A.2
we describe the auxiliary Sentinel-2 [1, 1 7] images. Finally,
we provide additional information on the different sampling
densities of our dataset in Appendix A.3.

A.l. Planet metadata

The commercial Planet Fusion data constitutes the core
part of the DynamicEarthNet dataset. In addition to the sur-
face reflectance values (RGB+near-infrared) that we use in
the main paper, Planet provides additional quality assurance
(QA) information. The purpose of this is to denote which
parts of the data are raw observations and which parts are
gap-filled with temporally close observations. For every
pixel, the QA product gives the distance and direction to
the day of the observation. For example, a pixel value of -1
implies that the pixel has been filled from the previous day.

A.2. Sentinel 2 auxiliary images

Sentinel-2 (S2) images are publicly available through
the open data policy of the European Space Agency’s
(ESA) Copernicus Program. The mission collects images
of all landmasses every 5 days at a resolution of 10m per
pixel [17]. While the temporal and spatial resolution of S2
time-series imagery is smaller than the Planet data, S2 col-
lects 13 channels compared to 4 channels of Planet Fusion.
In certain scenarios, the additional channels, particularly in
the short-wave infrared spectrum, may provide useful aux-
iliary information about changes on the ground.

In order to encourage cross-research between Planet Fu-
sion and S2 data, we accompany our dataset with monthly
images of S2 data from the same locations. The Sentinel-2
images are composite images which means they have been
created from multiple S2 images throughout the month.
This allows for a direct comparison of the effectiveness of
different sources of satellite imagery.

Our Sentinel-2 data is provided as a so-called Bottom-
Of-Atmosphere product which includes the correction of
distortions to the surface reflectance values caused by at-
mospheric interference. The S2 pre-processing quality is
relatively low compared to the analysis-ready Planet Fusion
product. For some areas of interest (AOIs), the collected S2
data suffer from occlusions through cloud coverage for all
S2 images in a month. This naturally compromises the qual-
ity of the monthly composites. We have collected affected
months for all AOIs manually in a designated S2 quality
assessment spreadsheet that we provide, together with the
dataset. 26% of monthly S2 composites suffer from mi-
nor quality issues and around 5% have major quality issues.
When the community explores applications of S2 data with

DynamicEarthNet, we advise to investigate whether consid-
ered cubes or months are potentially impacted.

A.3. Temporal densities

In our experiments in Sec. 5.2 and Sec. 5.3, we use three
different temporal sampling densities for both the spatio-
temporal and semi-supervised baselines:

* The monthly setting (fully supervised) shows the first
day of each month, resulting in a one-to-one corre-
spondence between input images and labels.

* For the weekly setting, we feed the architectures with
samples from the 1st, 5th, 10th, 15th, 20th and 25th
days of each month.

* The daily setting uses all the available images in a con-
sidered month, as well as the corresponding monthly
label.

In Fig. 4, we show the images of 5 time-series with a weekly
sampling density.

B. Evaluation protocol details

In the following, we motivate our design choices for the
metric proposed in Sec. 4 and compare it to other existing
metrics.

B.1. Semantic change

In contrast to semantic segmentation, semantic change
segmentation focuses on the changed parts of a given se-
mantic map. Similar to how boundary segmentation re-
stricts evaluation to the boundary pixels, our proposed met-
ric is restricted to changed pixels. We consider several op-
tions on how to restrict this subset. In the following, we
refer to pixels that have changed their semantic class from
one timestep to the next as changed pixels:

R1. We restrict the evaluation to the set of changed pixels,
as predicted by the considered method.

R2. We restrict the evaluation to the set of changed pixels
defined by the ground-truth semantic maps.

R3. We restrict the evaluation to the intersection of R1 and
R2, which is the set of true positives.

Using the set of R1 or R3 has the disadvantage that it
couples the semantic change performance with the binary
change performance. Only the pixels that are predicted
as changed are potentially also evaluated for the semantic
change score. Hence, errors in the binary change influence
the semantic change score, which potentially opens the met-
ric to misconduct. One can easily imagine a method that
reduces the set of predicted change artificially to a single
pixel for which the semantic class is predicted with very
high confidence. Then the SC score would be perfect (1.0),
while the BC score would be close to 0. The resulting over-
all SCS score would be around 0.5, which is much higher
than the scores reported in Tab. 5. Such behavior is com-
pletely undesired and leads to a metric that is not aligned



Figure 4. Training set samples. We visualize 5 sample time series (one per column) from the training set of the presented DynamicEarth-
Net dataset. Each sequence illustrates weekly samples (row 2-7) and the corresponding annotated monthly labels (1st row).



with human intuition, with results that are hard to interpret.
Thus, we use the second option R2 to compute the SC met-
ric. This makes the errors decoupled and the scores easy
and intuitive to interpret.

B.2. Comparison

Even though there exists no unified evaluation protocol
for semantic change segmentation, there are a few metrics
that focus on certain aspects of the task. In the following,
we discuss the different options and compare their efficacy
for the task of semantic change segmentation.

Pixel accuracy. Pixel accuracy, also referred to as over-
all accuracy, is one of the simplest measures for (binary)
segmentation problems. It is defined as the ratio of cor-
rectly classified pixels to all pixels. In settings like ours,
in which there are 2 classes for binary change and a high
imbalance between them, the pixel accuracy is not able to
report meaningful insights. In our setting, 95% of all pix-
els do not change. Thus, a score of 95% can be obtained
by predicting no change all the time. Therefore, we refrain
from using pixel accuracy as a metric.

mloU. The standard mean intersection-over-union ad-
dresses the immediate shortcomings of the vanilla pixel ac-
curacy metric. It is possible to use it for both, binary change
and semantic change. However, using the mloU metric for
binary change directly, i.e. computing the mean IoU of the
2 classes, suffers also from the imbalance issues discussed
for the pixel accuracy. Thus, the proposed BC metric com-
putes the IoU of only the change class, rather than both the
change and no-change class. For the semantic change, we
however apply mloU, i.e. computing the mean over all se-
mantic classes. As explained in the previous subsection, an
insightful change metric should focus on the changed re-
gions. We, therefore, refrain from using mIoU on the whole
image but compute the scores solely on the changed pixels.

Cohen’s kappa. Previous works [25,28,36] have used Co-
hen’s kappa to measure the performance in similar settings.
Cohen’s kappa is a statistical measure of the agreement be-
tween the predictions and ground-truth. It is more robust
compared to pixel accuracy as it takes the agreement oc-
curring by pure chance into account. However, this mea-
sure is not as informative as mloU. It does not offer in-
sights into the performance of individual classes. More-
over, since scores are not aggregated per class, the perfor-
mance of classes with high appearance rates will dominate
the score and therefore lead to an overall higher score. For
more details about the dataset imbalance, we refer to Tab. 2.
We thus choose to adapt the well-established IoU measure
for our needs.

SCS () BC( _SC(MD)

« CAC[21] 17.8 101 254
£ U-TAE [3] 19.1 95 287
T U-ConvLSTM [26]  19.0 102 278
= 3D-Unet [26] 17.6 102 250
s CAC[2]] 277 236 318
S U-TAE [34] 27.6 234 318
£ U-ConLSTM[26] 275 242 307
£ 3D-Unet [26] 253 212 294

Table 6. Quantitative results of our metric variant on our test
set. The first row shows the bi-temporal, and the second row shows
the multi-temporal results on weekly data. The first row results are
identical to the weekly results in Tab. 5.

B.3. Correcting wrong predictions

Our proposed metric requires a separate binary change
map b and semantic map y. It is therefore not limited to the
special case of computing the binary change b directly from
the predicted semantic maps for two consecutive timesteps
y:—1 and y;. This provides additional flexibility, as it is
often preferable to decouple the semantic maps from the
change predictions [25,28]. Moreover, it allows for the cor-
rection of previous mistakes in online methods that obtain
predictions frame-by-frame for an input time-series. As an
example, suppose that a semantic class for a certain pixel
is predicted wrong at a given timestep. If that pixel does
not change in the next timestep, its prediction would either
need to keep the wrong semantic class or predict a differ-
ent semantic class. However, predicting a different seman-
tic class would automatically be recognized as a predicted
change, resulting in an error in the binary change. Thus,
there is no way to correct previous mistakes without in-
troducing another one. This also holds for other types of
errors. By requiring each method to pass explicitly a bi-
nary change map b and semantic map ¥y, this issue can be
avoided. In our setting and the above example, the semantic
class can be corrected without predicting a binary change
for this pixel. This is especially important for methods that
are used for both semantic segmentation as well as semantic
change segmentation.

B.4. Discussion on bi-temporal change

In Sec. 4.1, we define the problem as a bi-temporal se-
mantic change segmentation that measures the SCS, SC,
and BC scores for a given ground truth y,; and y;4;. Given
that our dataset contains consistent multi-temporal land use
and land cover ground-truth information, it allows us to
extend the bi-temporal metric definition and calculate the
scores on time intervals of varying lengths. Specifically,
we investigate a variant of our bi-temporal semantic change
segmentation metrics by measuring the change between all
viable pairs of months (t tot + 1, ¢+ 2,¢ 4+ 3, ....) at each



area of interest (24 x 23 = 552 pairs in total).

We report the resulting accuracies in Tab. 6. For the
most part, the modified metric yields slightly higher val-
ues than our bi-temporal metric. We attribute this to the
fact that the modified metric has a certain smoothing ef-
fect, i.e. less emphasis is placed on pinpointing the exact
frame where change occurs. Throughout our dataset, we
notice that different types of changes happen over different
time periods (daily, weekly, monthly quarterly, or even sea-
sonally/yearly). On the other hand, the smoothing effect of
longer time intervals potentially under-penalizes prediction
errors on small time intervals, which goes against one of the
main motivations of having daily time-series observations.
In our work, we ultimately prefer the bi-temporal setting
and leave the detailed multi-temporal discussion as future
work.

C. Implementation details

All the experiments are implemented in PyTorch. Our
dataset contains 4 spectral bands (RGB + near-infrared).
The theoretical valid range for all 4 channels is 1-32,767;
however, in practice, the maximum value for the type of
data contained in our dataset is 10,000. For data normal-
ization, we calculate the mean and standard deviation per
band, averaged over the whole dataset. The exact obtained
values are

mean = [1042.59,915.62, 671.26, 2605.21] and
std = [957.96, 715.55, 596.94, 1059.90],

respectively. For data augmentation, we randomly resize
the images with a ratio between [0.5,2] and crop them to
half the input resolution (512,512). Additionally, we apply
random horizontal flips. As we specified in Sec. 3.3, due
to the scarcity of the snow & ice class, we do not include
them in the test and validation set. For the spatio-temporal
architectures, we use the Adam optimizer with a learning
rate of le — 4. The batch size is set to 4. We generally train
our networks for up to 100 epochs. For the spatio-temporal
experiment with daily samples, we use 200 epochs to ensure
convergence. The reported results are taken from the epoch
that achieves the highest validation accuracy. For the semi-
supervised architecture, analogous to [21], we use the SGD
optimizer with the poly learning rate decay policy. For both
the supervised and unsupervised samples, we use a batch
size of 8.

D. Additional qualitative results

Additional visualizations. We present additional qualita-
tive visualizations corresponding to the results in Sec. 5.2.
In Fig. 5, we depict a comparison of the different spatio-
temporal baselines described in Sec. 5.1. Furthermore, we

compare the effect of different temporal densities for the
semi-supervised baseline CAC [21] in Fig. 6. The weekly
training achieves the best results on the validation set, as in-
dicated by the results in Tab. 4. This is mostly due to the
fact that monthly and daily settings struggle to predict un-
common classes like wetlands (first example in Fig. 6) and
agriculture (second example in Fig. 6). Note that these ob-
servations are consistent with the confusion matrices shown
in Fig. 7.

Confusion matrices. We provide confusion matrices to
complement our results on LULC segmentation in Sec. 5.2.
The main idea is to allow for a more fine-grained analysis
in terms of the 6 semantic classes, see Fig. 7. We show re-
sults for both spatio-temporal methods and semi-supervised
learning. Each confusion matrix depicts which classes typi-
cally get misclassified as certain other classes. For example,
the overall uncommon class wetland frequently gets misla-
beled as soil, see e.g. the first example in Fig. 6. Beyond
that, one can also directly read the relative segmentation ac-
curacy of each class in the diagonal entries. As can be ex-
pected, the predictions are overall more stable for the more
common classes like forest & other vegetation and soil, see
Tab. 2 for reference. Among the spatio-temporal methods,
the 3D-Unet [26] setting yields the best results for the chal-
lenging impervious surface class, see e.g. the first exam-
ple in Fig. 5. All in all, these results indicate that future
approaches might benefit from reweighting the individual
class labels for a more balanced training that can account
for rare LULC classes.
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Figure 5. Spatio-temporal predictions. We show two qualitative comparisons of the spatio-temporal methods discussed in Sec. 5.1. Both
examples are taken from our validation set. The methods take a sequence of 31 and 30 daily samples as inputs (top left) and predict a single
semantic map for the whole month (bottom row). We furthermore show the ground-truth annotated map for comparison (top right).
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Figure 6. CAC [21] predictions. We show sample predictions by the semi-supervised baseline CAC [21] for three different examples from
our validation set. For each example, we depict the input sample (1st column), the ground-truth semantic map (2nd column), as well as the
predictions of [21] for the monthly, weekly, and daily training setup (3rd-5th column) respectively.
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Figure 7. Confusion matrices. We show confusion matrices corresponding to the LULC segmentation results in Sec. 5.2 on the validation
set. The goal is to provide a fine-grained analysis of which classes frequently get misclassified as certain other classes. Each column of an
individual confusion matrix is normalized, meaning that it shows the relative distribution of predictions (in percent) for a given, true class.
Results are shown for both spatio-temporal (left column) and semi-supervised baselines (right column) with three different settings each.



