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In this manuscript we provide the following material:

• Sec. 1. descriptions of datasets and training details.

• Sec. 2. more details on the proposed architecture.

• Sec. 3. performance vs. complexity.

• Sec. 4. additional experimental results.

• Sec. 5. more visual comparisons.

• Sec. 6. visualization of the learned model weights.

• Sec. 7. limitations and discussions.

1. Datasets and Training Details
All the datasets used in the paper are summarized in

Tab. 1. We describe details of training for each dataset in
the following. Note that we used the `2 loss for the dehaz-
ing task while using the loss defined in the main paper for
all the other tasks.
Image Denoising. We trained our model on 320 high-
resolution images provided in SIDD [2] and evaluated on
1,280 (256× 256) and 1,000 (512× 512) images provided
by authors of SIDD [2] and DND [27], respectively. The
results on DND were obtained via the online server [1]. We
cropped the training images into 512 × 512 patches with a
stride of 256 to prepare the training patches. We trained the
MAXIM-3S model for 600k steps with a batch size of 256.
Image Deblurring. We trained our model on 2,103 image
pairs from GoPro [23]. To demonstrate generalization abil-
ity, we evaluated our GoPro trained model on 1,111 pairs
of the GoPro evaluation set, 2,025 images in the HIDE
dataset [33], as well as the RealBlur dataset [32], which
contains 980 paired images of camera JPEG output and
RAW images, respectively. We cropped training images
from GoPro into 512 × 512 patches with a stride of 128
to generate training patches. We trained our MAXIM-3S
model over 600k steps with a batch size of 256. For evalu-
ation on RealBlur setting (2) (see main paper), we loaded
the GoPro pre-trained checkpoint and fine-tuned for 70k
and 15k iterations on RealBlur-J and RealBlur-R, respec-
tively. Additionally, we trained our model on 24,000 images

Task Dataset #Train #Test Test Dubname

Denoising SIDD [2] 320 40 SIDD
DND [27] 0 50 DND

Deblurring

GoPro [23] 2103 1111 GoPro
HIDE [33] 0 2025 HIDE
RealBlur-J [32] 3758 980 RealBlur-J
RealBlur-R [32] 3758 980 RealBlur-R
REDS [24] 24000 300 REDS

Deraining

Rain14000 [11] 11200 2800 Test2800
Rain1800 [40] 1800 0 -
Rain800 [48] 700 98 Test100
Rain100H [40] 0 100 Rain100H
Rain100L [40] 0 100 Rain100L
Rain1200 [47] 0 1200 Test1200
Rain12 [18] 12 0 -
Raindrop [28] 861 58 Raindrop-A
Raindrop [28] 0 239 Raindrop-B

Dehazing RESIDE-ITS [16] 13990 500 SOTS-Indoor
RESIDE-OTS [16] 313950 500 SOTS-Outdoor

Enhancement MIT-Adobe FiveK [4] 4500 500 FiveK
(Retouching) LOL [39] 485 15 LOL

Table 1. Dataset summary on five image processing tasks.

from the REDS dataset of the NTIRE 2021 Image Deblur-
ring Challenge Track 2 JPEG artifacts [24]. For evaluation,
we followed the settings in the NTIRE 2021 Challenge on
Image Deblurring [25], i.e., we used 300 images in the vali-
dation set of REDS. We trained from scratch for 10k epochs
on REDS [24].
Image Deraining. Following [13, 45], we used a
composite training set containing 13,712 clean-rain im-
age pairs collected from multiple datasets [11, 18, 40,
40, 47, 48]. Evaluation was performed on five test
sets, Rain100H [40], Rain100L [40], Test100 [48],
Test1200 [47], and Test2800 [11]. We trained our MAXIM-
2S model over 500k steps with a batch size of 512. For the
raindrop removal task, we trained MAXIM-2S on 861 pairs
of training images in Raindrop dataset [28] for 80k steps
with a batch size of 512, and evaluate on testset A (58 im-
ages) and testset B (239 images), respectively.
Image Dehazing. The RESIDE dataset [16] contains two
subsets: Indoor Training Set (ITS) which contains 13,990
hazy images generated from 1399 clean ones, and Out-
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Figure 1. We adopt a general multi-stage framework to improve the performance of MAXIM for challenging restoration tasks. Inspired
by [7, 45], we employ the supervised attention module (SAM) and cross-stage feature fusion to help later stages learn. Unlike previous
approaches, our MAXIM backbone attains global perception at each layer in each stage due to the proposed multi-axis MLP approaches,
making it more powerful in learning global interactions in both low-level and high-level features.

door Training Set (OTS) that consists of 313,950 hazing
images synthesized from 8,970 haze-free outdoor scenes.
We evaluated our model on the Synthetic Objective Testing
Set (SOTS) [16]: 500 indoor images for ITS-trained, and
500 outdoor images for OTS-trained models, respectively.
We trained for 10k and 500 epochs on RESIDE-ITS and
RESIDE-OTS using the `2 loss.
Image Enhancement. We used the MIT-Adobe FiveK [4]
dataset provided by [26] for the retouching evaluation: the
first 4,500 images for training and the rest 500 for testing.
We cropped training images into 512 × 512 patches with
a stride of 256. We also used the LOL dataset [39] which
includes 500 pairs of images for low-light enhancement. We
trained our model on 485 training images and evaluated on
15 test images. We trained for 14k and 180k steps on FiveK
and LOL, respectively.

2. Architecture Details
Our proposed general multi-stage and multi-scale frame-

work is illustrated in Fig. 1, where each stage uses a
single-stage MAXIM backbone, which is illustrated in the
main paper. We leveraged the multi-scale input-output ap-
proach [9] to deeply supervise each stage. Specifically,
given an input image I ∈ RH×W×3, we used the near-
est neighbour downscaling method [9] to generate multi-
scale input variants: In, n = 1, 2, 3, while we adopted a
bilinear downscaler to produce the ground truth variants:
Tn, n = 1, 2, 3. For each stage, we extracted shallow fea-
tures from the inputs at each scale using Conv3x3. Except
for the first stage, we fused the shallow features with at-
tention features coming from the previous supervised atten-
tion module (SAM) [45] using a cross gating block (CGB).
We also employed cross-stage feature fusion [7, 45] to help
later stages, where the intermediate Encoder and Decoder
features from the previous stage are fused with features en-

Depth Input shape Output Shape Layers

1 2562 × 3 2562 × 32 Conv3x3 s1 w32
1 2562 × 32 2562 × 32 CGB* (b = d = 16)
1 2562 × 32 2562 × 32 Conv1x1 s1 w32

1 2562 × 32 2562 × 32
{ MAB(b = d = 16)

RCAB(3 × 3, r = 4)

}
× 2

1 2562 × 32 1282 × 32 Conv3x3 s2 w32

2 1282 × 32 1282 × 64 Conv3x3 s1 w64
2 1282 × 64 1282 × 64 CGB* (b = d = 16)
2 1282 × 64 1282 × 64 Conv1x1 s1 w64

2 1282 × 64 1282 × 64
{ MAB(b = d = 16)

RCAB(3 × 3, r = 4)

}
× 2

2 1282 × 64 642 × 64 Conv3x3 s2 w64

3 642 × 64 642 × 128 Conv3x3 s1 w128
3 642 × 128 642 × 128 CGB* (b = d = 8)
3 642 × 128 642 × 128 Conv1x1 s1 w128

3 642 × 128 642 × 128
{ MAB(b = d = 8)

RCAB(3 × 3, r = 4)

}
× 2

3 642 × 128 322 × 128 Conv3x3 s2 w128

4 322 × 128 322 × 256 Conv1x1 s1 w256

4 322 × 256 322 × 256
{ MAB(b = d = 8)

RCAB(1 × 1, r = 4)

}
× 2

4 322 × 256 322 × 256 Conv1x1 s1 w256

4 322 × 256 322 × 256
{ MAB(b = d = 16)

RCAB(1 × 1, r = 4)

}
× 2

Table 2. Detailed architectural specifications of the Encoder part
of a single-stage MAXIM backbone. Depth 1-3 denotes Encoder
blocks, while depth 4 corresponds to Backbone blocks. Note that
in Bottlenecks, we use Conv1x1 in RCAB. * indicates layers that
are not employed in the first stage.

coded at the current stage using a CGB (blue lines in Fig. 1).

2.1. Configurations

The detailed specifications of the Encoder part for a
single-stage MAXIM are shown in Tab. 2. We also pro-
vide the input and output shapes of each block and layer.
Here Conv3x3 s1 w32 means a Conv layer with 3x3 ker-
nels, stride 1, and 32 channels. MAB and RCAB are the



Model Complexity Fully-conv Global

MLP-Mixer [36] O(N2) 7 3

gMLP [19] O(N2) 7 3

Swin-Mixer [22] O(N) 3 7

MAXIM (ours) O(N) 3 3

Table 3. Comparisons of MAXIM with other MLP models. Our
model is both fully-convolutional and global, having a linear com-
plexity with respect to the number of pixels N .

(a) Mixer / gMLP (b) Swin-Mixer (c) MAXIM

Figure 2. Visualizations of effective receptive fields (shaded area)
of the blue pixel for (a) Mixer/gMLP, (b) Swin-Mixer, and (c)
our MAXIM. MAXIM attains both local (red) and (dilated) global
(green) perception. Yellow pixels are achievable by both local and
global branches.

two major components in Encoder / Decoder / Bottleneck.
Note that in Bottleneck blocks, we use (Conv1x1) layers
to replace Conv3x3 in RCAB.

The Decoder part of MAXIM is symmetric with respect
to Tab. 2, and has the same configuration. For the CGB
necks, we used b = d = 16 for the depths 1 and 2, while b =
d = 8 is adopted for depth 3. Basically, we set the block
and grid sizes as 16 for high-resolution stages (i.e. feature
size≥ 128) and 8 for low-resolution stages (i.e. feature size
< 128). Consequently, the input images need to have both
dimensions to be divisible by 64, requiring the images to be
padded by a multiplier of 64 during the inference.

2.2. Comparison with Other MLPs

In Fig. 2, we show a visual comparison of the approx-
imated effective receptive fields among recent MLP mod-
els: MLP-Mixer [36], gMLP [19], Swin-Mixer [22], and
our proposed MAXIM. Our approach achieves sparse inter-
actions to obtain both local (red in Fig. 2c) and global di-
lated (green) spatial communications. Moreover, as shown
in Tab. 3, unlike previous MLP models, MAXIM obtains
both global and fully-convolutional properties with a linear
complexity with respect to the number of pixels N .

2.3. JAX Implementations

Here we provide a JAX [3] implementation of the key
component of MAXIM, namely the multi-axis gated MLP
block (MAB), in Algorithm 1.

Task Dataset Model PSNR Params FLOPs

Denoise SIDD [2]
MPRNet [45] 39.71 15.7M 1176G
MIRNet [44] 39.72 31.7M 1572G
MAXIM-3S 39.96 22.2M 339G

Deblur GoPro [23]

MPRNet [45] 32.66 20.1M 1554G
HINet [7] 32.71 88.7M 341G
IPT [6] 32.58 114M 1188G
MAXIM-3S 32.86 22.2M 339G

Derain Rain13k
(Average)

MSPFN [13] 30.75 21.7M -
MPRNet [45] 32.73 3.64M 297G
MAXIM-2S 33.24 14.1M 216G

Dehaze Indoor [16]
MSBDN [10] 33.79 31.3M 83G
FFA-Net [29] 36.36 4.5M 576G
MAXIM-2S 39.72 14.1M 216G

Enhance LOL [39] MIRNet [44] 24.14 31.7M 1572G
MAXIM-2S 23.43 14.1M 216G

Table 4. Model performance vs. complexity comparison of our
model with other competing methods for all the tasks. FLOPs are
calculated on an input image of size 256× 256.

REDS [24]

Method PSNR SSIM

MPRNet [45] 28.79 0.911
HINet [7] 28.83 0.862

MAXIM-3S 28.93 0.865

Table 5. Deblurring comparisons on REDS. Our method outper-
forms previous winning solution (HINet) on the REDS dataset of
NTIRE 2021 Image Deblurring Challenge Track 2 JPEG artifacts.
The scores are evaluated on 300 images from the validation set.
Results are gathered from the authors of [7].

Raindrop-A [28] Raindrop-B [28]

Method PSNR SSIM PSNR SSIM

AGAN [28] 31.62 0.921 25.05 0.811
DuRN [21] 31.24 0.926 25.32 0.817
Quan [30] 31.36 0.928 - -

MAXIM-2S 31.87 0.935 25.74 0.827

Table 6. Deraining comparisons on Raindrop removal dataset [28].
Our MAXIM-2S model attains state-of-the-art performance on
both Raindrop testset A and B.

3. Performance vs. Complexity
We demonstrate the performance vs. complexity trade-

off in Tab. 4 as compared with other competing methods for
all the tasks. As it can be seen, our model obtains state-
of-the-art performance at a very moderate complexity. On
denoising, for example, MAXIM-3S has only 21% FLOPs
and 70% parameters of MIRNet [44]; on deblurring, our
MAXIM-3S model requires only 25% of the number of pa-
rameters of the previous best model HINet [7], and merely
19% of the number of parameters of the Transformer model
IPT [6]. It is also worth noting that unlike IPT, our model
requires no large-scale pre-training to obtain leading per-



formance, making it attractive for low-level tasks where
datasets are often at limited scale.

4. Additional Experiments
Due to limited space in the main paper, we also show

experimental results on deblurring and raindrop removal.
Deblurring on REDS [24]. Tab. 5 shows quantitative
comparisons of MAXIM-3S against the winning solution,
HINet [7], and a leading model, MPRNet [45] on the REDS
dataset of NTIRE 2021 Image Deblurring Challenge Track
2 JPEG artifacts [24]. The metrics are computed and av-
eraged on 300 validation images. Our MAXIM-3S model
surpasses HINet by 0.1 dB of PSNR.
Raindrop removal [28]. Apart from the rain streak re-
moval task reported in the main paper, we also evaluated
our MAXIM model on the raindrop removal task. As can
be seen in Tab. 6, our model achieved the best performance:
31.87 dB and 25.74 dB PSNR on Raindrop testset A and B.

5. More Visual Comparisons
Denoising. Fig. 4 shows denoising results of our model
compared with SOTA models on SIDD [2]. Our model re-
covers more details, yielding visually pleasant outputs.
Deblurring. The visual results on GoPro [23], HIDE [33],
RealBlur-J [32], and REDS [24] are shown in Fig. 5, Fig. 6,
Fig. 7, and Fig. 8, respectively. Our model outperformed
other competing methods on both synthetic and real-world
deblurring benchmarks.
Deraining. Qualitative comparisons of our model against
SOTA methods on deraining are shown in Fig. 9, Fig. 10,
Fig. 11, and Fig. 12.
Raindrop removal. We provide visual comparisons of the
raindrop removal task on the Raindrop testset A and B [28]
in Fig. 13 and Fig. 14.
Dehazing. We provide dehazing comparisons on the
SOTS [16] indoor and outdoor sets in Fig. 15 and Fig. 16.
Retouching. Fig. 17 shows additional comparisons of our
model with competing methods on the Five-K dataset [4]
provided by [26] for retouching results.
Low-light enhancement. Fig. 18 demonstrates the evalua-
tions on the LOL [39] test set for low-light enhancement.

6. Weight Visualizations
Fig. 3 visualizes the spatial projection matrices of the

block gMLP and the grid gMLP layers of each stage of
MAXIM-3S trained on GoPro [23]. Similar to [19], we also
observed that the weights after learning exhibit locality and
spatial invariance. Surprisingly, the global grid gMLP layer
also learns to perform ‘local’ operations (but on the uniform
dilated grid). The spatial weights of block gMLP and grid
gMLP in the same layer often demonstrate similar or cou-
pled shapes, which may be attributed to the parallel-branch

design in the multi-axis gMLP block. However, we have
not observed a clear trend on how these filters at different
stages vary.

7. Limitations and Discussions
One potential limitation of our model, which is shared

with the existing SOTA, is the relatively inadequate gen-
eralization to real-world examples. This perhaps can be
attributed to the training examples provided by the exist-
ing synthesized image restoration benchmarks. Creating
more realistic, large-scale datasets through data-generation
schemes [34, 38] can improve this shortcoming. Also,
we observe that our model tends to slightly overfit certain
benchmarks, because we did not apply a strong regulariza-
tion (e.g., dropout) during training. Even though we find
that regularization may result in a small reduction in perfor-
mance for our models on these benchmarks we evaluated, it
is worth exploring in future to effectively improve the gen-
eralization of our restoration models.

It is worth mentioning that our model is able to generate
high quality sharp images, which are visually comparable
to the state-of-the-art generative models [14, 50]. Notably,
our model produces more conservative results without hal-
lucinating many nonexistent details, delivering more reli-
able results than generative models.
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Figure 3. Spatial projection weights in block gMLP and grid gMLP layers of the MAXIM-3S model trained on GoPro [23]. Each row
shows the filters (reshaped into 2D) for a reduced set of consecutive channels. The filter sizes for Encoder depth 1 and 2 are 16× 16, while
for Encoder depth 3 and Bottleneck1 are 8 × 8 (resized to the same shape for better visualization). It is worth noting that the weights of
block gMLP layers (left) are directly applied on pixels within local windows and shared at each non-overlapping window of the feature
maps (similar to strided convolution), while the weights of grid gMLP layers (right) correspond to a global, dilated aggregation overlaid
on the entire image.



Input Target VDN DANet MIRNet CycleISP MPRNet MAXIM-3S (Ours)

Figure 4. Visual examples for image denoising on SIDD [2] among VDN [41], DANet [42], MIRNet [44], CycleISP [43], MPRNet [45],
and the proposed MAXIM-3S. Our model clearly removed real noise while recovering more details.
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Figure 5. Visual examples for image deblurring on GoPro [23] among DMPHN [46], Suin et al. [35], MPRNet [45], HINet [7], MIMO-
UNet [9], and our MAXIM-3S.
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Figure 6. Visual comparisons for image deblurring on HIDE [33] among DMPHN [46], Suin et al. [35], MPRNet [45], HINet [7], MIMO-
UNet [9], and our MAXIM-3S.
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Figure 7. Visual comparisons for image deblurring on RealBlur-J [32] between previous best model MPRNet [45] and MAXIM-3S.



Input Target
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Figure 8. Visual comparisons for image deblurring on REDS [24] between our model and the winning solution, HINet [7], for REDS
dataset of the NTIRE 2021 Image Delurring Challenge Track 2 JPEG artifacts [24].
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Figure 9. Visual examples for image deraining on Rain100L [40] among RESCAN [17], PreNet [31], MSPFN [13], MPRNet [45],
HINet [7], and our MAXIM-2S model.
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Figure 10. Visual examples for image deraining on Rain100H [40]. At extremely high raining levels, our model recovers more details and
textures compared to previous competitive methods.



Figure 11. Visual examples for image deraining on Test100 [48]. Our model removes both raining streaks and visible JPEG artifacts.
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Figure 12. Visual examples for image deraining on Test1200 [47].
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Figure 13. Visual comparisons for raindrop removal on Raindrop-A [28] among AGAN [28], DuRN [21], Quan [30], and MAXIM-2S.
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Figure 14. Visual comparisons for raindrop removal on Raindrop testset B [28].
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Figure 15. Visual comparisons for image dehazing on SOTS indoor testset [16] among GCANet [5], GridDehaze [20], DuRN [21],
MSBDN [10], FFA-Net [29], and our MAXIM-2S.
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Figure 16. Visual comparisons for image dehazing on SOTS outdoor testset [16] of MAXIM-2S against other approaches.
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Figure 17. Visual comparisons for image retouching on MIT-Adobe FiveK [4] provided by the authors of [26] among CycleGAN [51],
Exposure [12], DPE [8], EnlightenGAN [15], UEGAN [26] and MAXIM-2S.
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Figure 18. Visual examples for image low-light enhancement on the LOL dataset [39] between Retinex [39], GLAD [37], KinD [49],
EnlightenGAN [15], MIRNet [44], and MAXIM-2S. Our model effectively enhances lighting while largely reducing noise, producing
higher-quality images compared to other approaches.



Algorithm 1 JAX code implementing the Multi-Axis Gated MLP Block (MAB).

from typing import Sequence
import einops
import flax.linen as nn
import jax.numpy as jnp

def block_images(x, patch_size):
n, h, w, channels = x.shape
grid_height, grid_width = h // patch_size[0], w // patch_size[1]
x = einops.rearrange(x, "n (gh fh) (gw fw) c -> n (gh gw) (fh fw) c",

gh=grid_height, gw=grid_width, fh=patch_size[0], fw=patch_size[1])
return x

def unblock_images(x, grid_size, patch_size):
x = einops.rearrange(x, "n (gh gw) (fh fw) c -> n (gh fh) (gw fw) c",

gh=grid_size[0], gw=grid_size[1], fh=patch_size[0], fw=patch_size[1])
return x

class SpatialGatingUnit(nn.Module):
"""Gated MLP applied on a specified axis: -3 for grid and -2 for block."""
@nn.compact
def __call__(self, x, axis=-3):
u, v = jnp.split(x, 2, axis=-1)
v = nn.LayerNorm()(v)
n = x.shape[axis] # get spatial dim at the ’grid’ or ’block’ axis
v = jnp.swapaxes(v, -1, axis)
v = nn.Dense(n)(v)
v = jnp.swapaxes(v, -1, axis)
return u * (v + 1.)

class SpatialGmlpLayer(nn.Module):
"""Gated MLP applied on a specified axis: -3 for grid and -2 for block."""
grid_size: Sequence[int]
block_size: Sequence[int]
@nn.compact
def __call__(self, x, axis=-3):
n, h, w, num_channels = x.shape
if axis=-3: # for grid gMLP layer

gh, gw = self.grid_size
fh, fw = h // gh, w // gw

elif axis=-2: # for block gMLP layer
fh, fw = self.block_size
gh, gw = h // fh, w // fw

x = block_images(x, patch_size=(fh, fw))
y = nn.LayerNorm()(x)
y = nn.Dense(num_channels * 2)(y)
y = nn.gelu(y)
y = SpatialGatingUnit()(y, axis=axis)
y = nn.Dense(num_channels)(y)
x = x + y
x = unblock_images(x, grid_size=(gh, gw), patch_size=(fh, fw))
return x

class MultiAxisGmlpBlock(nn.Module):
block_size: Sequence[int]
grid_size: Sequence[int]
@nn.compact
def __call__(self, x):
shortcut = x
n, h, w, num_channels = x.shape
x = nn.LayerNorm()(x)
x = nn.Dense(num_channels * 2)(x)
x = nn.gelu(x)
# split two heads, then applied grid gMLP and block gMLP respectively.
u, v = jnp.split(x, 2, axis=-1)
u = SpatialGmlpLayer(grid_size=self.grid_size)(u, axis=-3)
v = SpatialGmlpLayer(block_size=self.block_size)(v, axis=-2)
# Concat and output projection
x = jnp.concatenate([u, v], axis=-1)
x = nn.Dense(num_channels)(x)
x = x + shortcut
return x
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