
Supplementary Material

A. Details of the datasets
We include here additional details related to the

datasets we used, namely GTA-5 [62], SYNTHIA [65],
Cityscapes [20] and ACDC [68]. In particular, in Fig. A.1
we provide example images from each dataset with the
corresponding ground-truth segmentation map. Then, in
Sec A.1 we discuss which categories we considered, as dif-
ferent datasets have different annotations available. Finally,
we provide details about the sequences we designed for the
experiments in Sec A.2.

A.1. Classes
In this section, we detail the subset of categories that we

considered for our experiments, an important point since
some classes are available in some datasets but not in oth-
ers. For example, lane-marking is available in SYNTHIA
but not in GTA-5/Cityscapes/ACDC, and vice-versa the ter-
rain class is available in GTA-5/Cityscapes/ACDC but not
in SYNTHIA. We used the 19 classes below from the GTA-
5 that are also available in Cityscapes/ACDC: road, side-
walk, building, fence, pole, light, sign, vegetation, sky, per-
son, car, bicycle, bus, train, motorcycle, wall, terrain, truck,
rider. For GTA-5/Cityscapes/ACDC, we use all of them.
For SYNTHIA, we only use the ones highlighted in ma-
genta (the others being unavailable).

A.2. Sequences
In the following, we report the details of the differ-

ent sequences used in our experiments. This is limited to
the SYNTHIA, ACDC, Cityscapes O. and Cityscapes A.W.
dataset. In the case of GTA-5, the whole dataset is used
for the offline pre-training step; images are randomly sam-
pled from the dataset and the dataset is parsed over several
epochs.
SYNTHIA. For clarity, this paragraph uses the sequence
IDs as reported in the dataset’s directories: 01 is Highway,
04 is Old European Town and 05 is New York-like City.
The weather/daylight/seasonal conditions we used are Sum-
mer, Spring, Fall, Winter, Dawn, Sunset, Night, Rain, Fog,
Rain-night, Winter-night. To indicate a sub-sequence shift,
we use arrows (!). For each sub-sequence, we indicate
the specific environment and the specific weather/daylight
condition (e.g. , 04/Night). We use 300 consecutive frames
per sub-sequence (to limit the length of the experiments),
and build the following sequences – each one totalling 1.5k
samples:

• 05/Night (300 frames) ! 01/Dawn (300 frames) ! 01/Win-
ter (300 frames) ! 05/Winternight (300 frames) ! 04/Soft-
rain (300 frames)

• 04/Night (300 frames) ! 01/Winter (300 frames) ! 04/Soft-
rain (300 frames) ! 05/Winternight (300 frames) ! 05/Fog
(300 frames)

• 01/Winternight (300 frames) ! 05/Winternight (300 frames)
! 05/Night (300 frames) ! 04/Sunset (300 frames) !
04/Winter (300 frames)

• 05/Winternight (300 frames) ! 05/Dawn (300 frames) !
05/Night (300 frames) ! 05/Sunset (300 frames) ! 01/Win-
ter (300 frames)

• 05/Softrain (300 frames) ! 01/Night (300 frames) ! 04/Fog
(300 frames) ! 05/Winter (300 frames) ! 01/Winternight
(300 frames)

• 01/Night (300 frames) ! 04/Fog (300 frames) ! 01/Fall
(300 frames) ! 05/Fall (300 frames) ! 05/Rain (300
frames)

• 04/Spring (300 frames) ! 05/Winter (300 frames) !
04/Night (300 frames) ! 01/Dawn (300 frames) ! 04/Rain-
night (300 frames)

• 01/Winter (300 frames) ! 04/Sunset (300 frames) !
04/Spring (300 frames) ! 01/Spring (300 frames) ! 05/Fog
(300 frames)

• 04/Rainnight (300 frames) ! 04/Softrain (300 frames) !
05/Winter (300 frames) ! 05/Fog (300 frames) ! 01/Dawn
(300 frames)

Cityscapes O. We only use frames from the original
Cityscapes dataset (without weather variations) for which
“fine-grained” annotation is provided (Cityscapes also pro-
vides frames for which some “coarse” annotation is pro-
vided). Apart from this, we do not perform any cut to the
sub-sequences, and build the following sequences:

• Aachen (174 frames) ! Hamburg (248 frames) ! Frankfurt
(267 frames) ! Munster (174 frames)

• Jena (119 frames) ! Hamburg (248 frames) ! Zurich (122
frames) ! Hanover (196 frames)

• Hamburg (248 frames) ! Stuttgart (196 frames) ! Tubin-
gen (144 frames) ! Darmstadt (85 frames)

• Stuttgart (196 frames) ! Bochum (96 frames) !
Monchengladbach (94 frames) ! Bremen (316 frames)

• Lindau (59 frames) ! Bochum (96 frames) ! Aachen (174
frames) ! Stuttgart (196 frames)

• Monchengladbach (94 frames) ! Dusseldorf (221 frames)
! Jena (119 frames) ! Strasbourg (365 frames)

• Jena (119 frames) ! Strasbourg (365 frames) ! Bochum
(96 frames) ! Dusseldorf (221 frames)

• Strasbourg (365 frames) ! Stuttgart (196 frames) ! Tubin-
gen (144 frames) ! Monchengladbach (94 frames)

• Krefeld (99 frames) ! Erfurt (109 frames) ! Tubingen (144
frames) ! Strasbourg (365 frames)

• Monchengladbach (94 frames) ! Lindau (59 frames) !
Aachen (174 frames) ! Jena (119 frames)



Figure A.1. Sample images of the datasets used for our experiments.

Cityscapes A.W. We define the following sequences by
combining sub-sequences (without cut) from the original
Cityscapes [20] (Clean), from Cityscapes sequences with
artificial Fog [67] and with artificial Rain [35]. “Clean” in-
dicates that the original sequences are used.

• Zurich/Clean (122 frames) ! Darmstadt/Fog (85 frames) !
Dusseldorf/Rain (68 frames) ! Jena/Fog (119 frames)

• Munster/Rain (30 frames) ! Hamburg/Fog (248 frames) !

Cologne/Clean (154 frames) ! Erfurt/Clean (109 frames)

• Bremen/Clean (316 frames) ! Stuttgart/Fog (196 frames)
! Aachen/Rain (65 frames) ! Tubingen/Clean (144
frames)

• Dusseldorf/Rain (68 frames) ! Darmstadt/Clean (85
frames) ! Tubingen/Fog (144 frames) ! Bremen/Rain (53
frames)

• Bremen/Rain (53 frames) ! Krefeld/Clean (99 frames) !



Lindau/Fog (59 frames) ! Bochum/Clean (96 frames)

• Cologne/Clean (154 frames) ! Munster/Rain (30 frames)
! Hanover/Fog (196 frames) ! Bremen/Clean (316
frames)

• Frankfurt/Fog (267 frames) ! Erfurt/Rain (59 frames) !
Zurich/Clean (122 frames) ! Cologne/Clean (154 frames)

• Hanover/Clean (196 frames) ! Aachen/Fog (174 frames) !
Jena/Fog (119 frames) ! Munster/Rain (30 frames)

• Bremen/Rain (53 frames) ! Ulm/Fog (95 frames) !
Zurich/Clean (122 frames) ! Darmstadt/Fog (85 frames)

• Erfurt/Rain (59 frames) ! Ulm/Clean (95 frames) !
Aachen/Rain (65 frames) ! Lindau/Fog (59 frames)

ACDC. We do not perform any cut to the sub-sequences,
and build the following sequences:

• GP010476/Fog (41 frames) ! GP010402/Rain (31 frames)
! GP030176/Snow (22 frames) ! GP010376/Night (56
frames)

• GP010476/Fog (41 frames) ! GOPR0351/Night
(149 frames) ! GOPR0122/Snow (48 frames) !
GP020402/Rain (102 frames)

• GOPR0402/Rain (83 frames) ! GP010376/Night (56
frames) ! GP010607/Snow (69 frames) ! GOPR0478/Fog
(41 frames)

• GP040176/Snow (86 frames) ! GP020402/Rain (102
frames) ! GP020397/Night (44 frames) ! GP010476/Fog
(41 frames)

• GOPR0122/Snow (48 frames) ! GP020475/Fog
(37 frames) ! GOPR0356/Night (50 frames) !
GP010402/Rain (31 frames)

B. Details of the methods

Hyper-parameter selection. We report details related
to the choice of hyper-parameters, expanding on Sec-
tion 5 from the main manuscript. We train our models
with a DeepLab-V2 [12] architecture, implemented in Py-
Torch [60]. We pre-train our models on GTA-5 [62] for 6
epochs, using SGD optimizer with learning rate ⌘ = 2.5 ·
10�4, momentum ↵ = 0.9 and weight decay � = 5 ⇤ 10�4.
For GPU-memory constraints, we set the batch size to 1.
In the following, we report the hyper-parameters associated
with each method.

• N-BN: BN momentum ↵ = 0.1

• C-BN: BN momentum ↵ = 0.1

• N-TENT: learning rate ⌘ = 1.0

• C-TENT: learning rate ⌘ = 0.01

• C-TENT-SR: learning rate ⌘ = 0.01, source regular-
izer weight � = 1.0

• Class-R-TENT: learning rate ⌘ = 0.1, K = 1,  =
1.0

• Oracle-R-TENT: learning rate ⌘ = 1.0

• N-PL: learning rate ⌘ = 10�4

• C-PL: learning rate ⌘ = 10�4

• C-PL-SR: learning rate ⌘ = 10�4, source regularizer
weight � = 2.0

• Class-R-PL: learning rate ⌘ = 10�4, K = 1,  = 1.0

• Oracle-R-PL: learning rate ⌘ = 10�4

The hyper-parameters were cross-validated on SYN-
THIA sequences, and kept unchanged for ACDC,
Cityscapes A.W. and Cityscapes O. sequences.
Domain randomization (DR). To perform domain ran-
domization (DR [77]), we modify the aspect of training
samples by applying K different, random image transfor-
mations before feeding each sample to the model. Refer-
ring to notation in Table 2 in the main paper, we validate
K = 2, 3, 4 for DR", DR"" and DR""" respectively. In the
following, we report the different transformations we rely
on during training and we refer the reader to PIL [1–3] for
a more detailed documentation.

• Identity: the image remains unchanged.

• Brightness: the brightness of the image is perturbed,
with intensity in the range [0.2; 1.8].

• Color: the color of the image is perturbed, with inten-
sity in the range [0.2; 1.8].

• Contrast: the contrast of the image is perturbed, with
intensity in the range [0.2; 1.8].

• RGB perturbations: a random scalar in the range
[0; 120] is added to each of the RGB channels.

• RGB-to-gray: the image is converted to grayscale.

C. Additional results
We provide in this section additional results, to extend

the main ones included in the manuscript. To provide a
roadmap, in Sec. C.1 we analyze the effect of BN momen-
tum ⌘ on the N-BN method; in Sec. C.2 we show adaptation
results obtained when starting from the ERM source model;
in Sec. C.3 we analyze how the results vary in the iterative
methods N-PL and N-TENT when increasing the number
of adaptation iterations; in Sec. C.4 we provide additional
ACDC results, for sequences where only the urban environ-
ment change, but the weather/daylight condition is fixed;
and finally, in Sec. C.5 we provide more continual learning
curves such as the one shown in Fig. 3 in the main paper.



%
 m

Io
U 

im
pr

ov
em

en
t

BN momentum (!)
0.1 0.25 0.5

Figure C.2. SYNTHIA results for N-BN – varying BN momentum
(↵).

C.1. BN adaptation
In Figure C.2 we showcase the distribution of N-BN re-

sults for the SYNTHIA sequences, when we vary the BN
momentum (↵ = 0.1, 0.25, 0.5 in blue, orange and green,
respectively). The general trend is that increasing the mo-
mentum ↵ – that means, increasing the impact of the target
sample’s statistics when mixing those with the source statis-
tics – leads to higher average results at the price of a signif-
icantly larger spread. These results indicate that the algo-
rithm will perform significantly better on some sequences,
and significantly worse in others. Since this approach is ver-
satile and could be applied in tandem with any other method
(for example, one could perform continual adaptation with
a reset mechanism, and also adapt BN statistics with in-
creased BN momentum on each sample), we believe that
a more thorough understanding of its behavior on the pro-
posed task represents an interesting research direction.

C.2. Adapting from ERM v.s. adapting from DR
In Table C.1 we compare the adaptation results on ACDC

between the models started from ERM with the models
started from DR"". We can observe that none of the models
started from ERM achieves the performance of the baseline
DR"" – apart the Oracle-R, which starting from ERM per-
forms on par with the DR"" NA baseline. This confirms the
crucial importance of the initial M✓0 . A second observation
we can make is that while the numbers are lower for mod-
els that start the adaptation from ERM (first column), the
overall improvement trend is consistent in general; this em-
phasizes that the conclusions made concerning the different
adaptation strategies hold even if we change the initial M✓0 .

C.3. Adaptation iterations for PL and TENT
In Table C.2 we compare N-PL and N-TENT results

as we increase the number of iterations. For example, in
the case of N-PL we iterate several times between pseudo-
labeling and updating the model. We can observe that, in
general, increasing the number of iterations yields better re-
sults for N-PL. In the case of N-TENT, in the multi-iteration

Comparing adaptation from ERM and DR
Pre-trained model

Method ERM DR""

No adaptation 29.5 ±2.5 33.6 ±2.5

Style transfer

N-ST (NN) 27.4 ±2.2 31.9 ±2.3

N-ST (rand) 25.5 ±1.6 31.1 ±1.7

Naive adapt.

N-BN 30.2 ±2.6 34.4 ±2.5

N-PL 30.4 ±2.6 34.6 ±2.5

N-TENT 31.5 ±2.7 35.3 ±2.7

CL adapt.

C-BN 31.7 ±2.2 35.9 ±2.3

C-PL 27.8 ±3.4 29.7 ±3.6

C-TENT 31.2 ±2.8 34.5 ±3.4

CL+SR adapt.

C-PL-SR 31.3 ±2.8 34.5 ±2.7

C-TENT-SR 31.1 ±2.9 35.6 ±2.8

Adaptive-reset adapt.

Class-N-PL 32.4 ±2.3 36.3 ±2.3

Class-N-TENT 32.1 ±2.3 36.0 ±2.3

Oracle-reset adapt.

Oracle-N-PL 33.6 ±2.4 37.5 ±2.3

Oracle-N-TENT 33.6 ±2.4 37.2 ±2.3

Table C.1. Comparison between models adapted starting from
ERM or DR"" pre-training. Results reported in mIoU.

case, results can be significantly improved by reducing the
learning rate (except in the case of Cityscapes O.). Natu-
rally, this improvement comes with an increased computa-
tional cost, which can be prohibitive according to specific
applications – e.g. , autonomous driving.

C.4. Sequences with multiple cities and fixed
weather/daylight conditions

We report in Table C.3 results associated with ACDC
sequences where the condition (Fog, Night, Rain, Snow)
is fixed, and only the urban environment change. For
each condition, results are averaged over the following
sequences:

Fog:

• GP020475 ! GOPR0478 ! GOPR0476 ! GP010476

• GOPR0477 ! GP020478 ! GP010476 ! GOPR0475

• GP020475 ! GOPR0476 ! GOPR0478 ! GP010476

• GOPR0477 ! GOPR0479 ! GOPR0476 ! GP020475



Varying the number of iterations for N-PL and N-TENT
Sequence type

Method Adapt iter. Learn. rate SYNTHIA ACDC Cityscapes A.W. Cityscapes O.

N-PL 1 0.0001 +3.5% ±1.0 +2.9% ±0.6 +2.4% ±1.0 +1.4% ±0.2

N-PL 3 0.0001 +7.8% ±2.7 +6.5% ±1.7 +5.2% ±2.6 +2.4% ±0.4

N-PL 5 0.0001 +9.5% ±3.7 +8.4% ±2.7 +6.5% ±3.7 +2.2% ±0.6

N-TENT 1 1.0 +8.5% ±3.1 +4.9% ±2.0 +3.1% ±3.6 �1.2% ±0.7

N-TENT 3 1.0 +8.4% ±4.2 +4.0% ±3.1 +3.4% ±5.3 �3.0% ±1.0

N-TENT 5 1.0 +6.8% ±4.6 +2.9% ±3.5 +2.8% ±5.9 �4.5% ±1.2

N-TENT 1 0.1 +4.0% ±1.1 +3.1% ±0.7 +2.6% ±1.2 +1.4% ±0.2

N-TENT 3 0.1 +8.9% ±2.9 +6.9% ±1.9 +5.4% ±3.0 +2.1% ±0.4

N-TENT 5 0.1 +10.7% ±3.8 +8.5% ±2.9 +6.4% ±4.2 +1.5% ±0.6

Table C.2. Results (relative performance gain in %) obtained on N-PL and N-Tent when increasing the number of training iterations.

Night

• GOPR0351 ! GP010376 ! GOPR0356 ! GP020397

• GP020397 ! GOPR0356 ! GOPR0376 ! GOPR0351

• GP010397 ! GP010376 ! GOPR0351 ! GOPR0356

• GOPR0356 ! GOPR0351 ! GOPR0376 ! GP010376

Rain

• GOPR0400 ! GP020400 ! GP020402 ! GOPR0402

• GP010400 ! GP020402 ! GOPR0400 ! GOPR0402

• GP010400 ! GOPR0400 ! GP010402 ! GP020400

• GOPR0402 ! GOPR0400 ! GP010400 ! GP010402

Snow

• GP010607 ! GOPR0604 ! GOPR0606 ! GOPR0122

• GOPR0606 ! GP010122 ! GP050176 ! GOPR0607

• GOPR0607 ! GP010122 ! GOPR0604 ! GP030176

• GP010607 ! GP030176 ! GOPR0604 ! GOPR0606

Discussion. When we analyze the results in the Table C.3,
on Fog and Snow sequences we can observe a behavior sim-
ilar to the one that we have observed for the ACDC dataset
obtained with the multi-environment multi-condition se-
quences (Table 1). On the other hand, Night and Rain
sequences represent an interesting case study, with some
discrepancies. For example, we can observe significant
improvements when adapting with Style Transfer (ST) to
Night sequences due to the fact that the ST can effectively
increase the overall brightness and contrast of the image
(see Fig. C.8), making it easier for the model to process such
samples. Furthermore, note that due to a strong domain gap

ACDC results (multi environment / single condition)
Sequence type

Fog Night Rain Snow
No adapt. (NA) 41.4 ±1.5 15.6 ±0.9 41.9 ±0.2 38.9 ±0.8

Method Improvements

Style transfer

N-ST (NN) �8.8% ±2.1 �3.3% ±0.5 �6.4% ±0.6 �2.8% ±0.6

N-ST (rand) �13.9% ±1.3 +20.6% ±1.6 �9.9% ±0.5 �10.3% ±0.5

Naive adaptation

N-BN +2.7% ±0.8 +4.5% ±0.3 +1.6% ±0.2 +2.1% ±0.4

N-PL +3.5% ±1.1 +5.1% ±0.3 +1.9% ±0.2 +2.7% ±0.4

N-TENT +9.1% ±3.7 +5.5% ±0.7 +1.2% ±0.5 +7.1% ±1.2

CL adaptation

C-BN +8.4% ±5.1 +23.7% ±2.1 +0.0% ±0.8 +6.8% ±2.1

C-PL +0.8% ±6.2 �41.2% ±21.1 �15.8% ±2.3 �12.2% ±6.3

C-TENT +8.7% ±5.7 �8.1% ±2.0 �3.0% ±1.0 +4.6% ±2.1

CL+SR adaptation

C-PL-SR +8.2% ±2.6 �10.8% ±1.7 �2.0% ±0.9 +4.3% ±2.0

C-TENT-SR +6.1% ±3.0 +0.0% ±3.2 +0.6% ±0.1 +3.5% ±1.3

Adaptive-reset adaptation

Class-N-PL +9.8% ±5.6 +25.0% ±2.2 +0.2% ±0.9 +7.3% ±2.0

Class-N-TENT +9.4% ±6.0 +24.6% ±2.1 �0.4% ±0.9 +6.8% ±2.3

Oracle-reset adaptation

Oracle-N-PL +13.0% ±5.9 +32.2% ±2.7 +2.7% ±0.8 +10.4% ±1.9

Oracle-N-TENT +13.6% ±6.4 +31.1% ±2.9 +1.6% ±0.8 +10.1% ±2.1

Table C.3. Results (relative performance gain in %) on ACDC se-
quences built with multiple cities but fixed weather/daylight con-
ditions.

between GTA-5 (containing mainly day images) and images
all over these sequences (all night images), the NA baseline
yields to a poor performance even with DR"". The con-



DR (NA)
ERM (NA)

m
Io

U 
[0

.0
-1

.0
]

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.7

20 40 60 80 100 120 140
Images processed (sequence steps)

Fog Rain Snow Night

Figure C.3. ERM vs DR Performance evolution of ERM and DR
non-adapted (NA) models, in pink and light blue, respectively – for one
ACDC [65] sequence. In the plot, it can be observed that DR brings con-
sistent improvements with respect to ERM. Top: qualitative comparison
between predictions of the two methods when processing the reported im-
age; notice the sidewalk on the bottom-right corner.

tinual learning methods C-PL and C-TENT fail in this con-
dition, and SR does not carry the same improvements than
it did in other setups. The best performing strategies are
C-BN and the reset methods. For the Rain sequences, we
observe a similar behavior to the one already observed for
Cityscapes O. (Table 1). Starting from a strong DR"" base-
line model, none of the continual methods, excluding the
Oracle-R approach, brings significant improvements, and
the gain of Oracle-R over the baseline is relatively mod-
est. Surprisingly, there is a significant improvement for the
Fog sequence, a condition for which the NA model per-
forms as well as for Rain. Properly understanding differ-
ent condition-dependent behaviors represents an interesting
research question for real-world applications.

C.5. Qualitative plots
We finally report additional qualitative plots, showing

the performance evolution as in Figure 3 in the main paper.
We report them in Figures C.3—C.6, extending Figure 3
from the main manuscript. Apart from models reported in
Figure C.3, results reported in all other figures assume DR
pre-training. We summarize the content of each figure be-
low, and report the details in the different captions.

• Figure C.3: We compare models with and without
DR [77] pre-training, in light blue and pink, respec-
tively.

• Figure C.4: We compare models trained with and with-
out BN [38] statistics online adaptation [53], in blue
and pink, respectively.

• Figure C.5: We compare models trained via N-PL, C-
PL and Class-R-PL, in blue, orange and green, respec-
tively.

m
Io

U 
[0

.0
-1

.0
]

0.1

0.2

0.3

0.4

0.5

0.6

0.0
200 400 600 8000 1000 1200 1400

Images processed (sequence steps)

C-BN
NA

Highway/
Winter-night

NYC/
Winter-night

NYC/Night Europe/Sunset Europe/Winter

Figure C.4. C-BN vs NA. Performance evolution of a non-adapted model
(NA) and a model whose BN statistics is updated continuously [53], in pink
and blue, respectively – for one SYNTHIA [65] sequence. In the plot, it
can be observed that C-BN generally brings consistent improvements with
respect to NA. Top: qualitative comparison between predictions of the two
methods when processing the reported image (on the left, we report failure
cases of C-BN w.r.t. NA, from the limited number of frames in which
C-BN underperforms.).

• Figure C.6: We compare models trained via N-PL, C-
PL and C-PL-SR, in blue, orange and red, respectively.

Figure C.7 (top) provides a qualitative view on improve-
ments led by adapting the model with C-TENT-SR (top-
right) with respect to the non-adapted baseline (top-middle).
In this specific example, the improvement in classifying
the sidewalk’s pixels is very significant. Figure C.7 (bot-
tom) provides qualitative evidence of “catastrophic forget-
ting”, which we discussed about in the main manuscript.
When the model is trained continuously and without reg-
ularization, it can forget classes if it does not encounter
them for a while. In this specific example, the C-TENT
model has forgotten the pedestrian class almost completely
(bottom-middle). By regularizing with a term that optimizes
the cross-entropy loss on source samples, the C-TENT-SR
model is continuously exposed to the source classes; hence,
it does not forget about them (bottom-right).

D. Style transfer
One of the most popular approaches for unsupervised

domain adaptation is to apply a photorealistic transforma-
tion to the source images (usually the training set) so that
they resemble the style of the target images (usually the
test or deployment data) [19, 52, 63, 73, 92]. However these
methods assume that, even if unlabeled, both the source
and target image distributions are known at train time. In
this work, we are proposing a benchmark where test images
are unknown a priori and we receive them as a continuous
stream. Thus, we can not apply these techniques directly.
On the other hand, a related line of work has focused on
performing single-image style transfer: Given a content im-
age and a style image, transform the content image to mimic



0 200100 15050 250

m
Io

U 
[0

.0
-1

.0
]

0.1

0.2

0.3

0.4

0.5

0.6

0.0

C-PL
N-PL

Class-R-PL

Rain Night Snow Fog

Class-R-PLC-PL

Images processed (sequence steps)

N-PL

Figure C.5. Naive vs Continual vs Reset. Performance evolution of
Naive, “Vanilla” continual, and Class-reset versions of PL (N-PL, C-
PL and Class-R-PL, is orange, blue and green, respectively) – for one
ACDC [68] sequence. In the plot, it can be observed that learning con-
tinuously without precautions results in sub-optimal performance, and that
reset can allow maintaining a performance close to the naive counterpart
in some parts of the sequence, while significantly improving over it in oth-
ers. Top: qualitative comparison between predictions of different methods
when processing the reported image; C-PL has catastrophically forgotten
sidewalks, pedestrians and poles (best in color zooming in).

m
Io

U 
[0

.0
-1

.0
]

0.1

0.2

0.3

0.4

0.5

0.6

0.0

C-PL
N-PL

C-PL-SR

200 400 600 8000 1000 1200 1400
Images processed (sequence steps)

Europe/Daylight NYC/Daylight Europe/Night Highway/Dawn Europe/Rain-Night

C-PL-SRC-PL N-PL

Figure C.6. Naive vs Continual vs Source regularized. Performance
evolution of Naive, “Vanilla” continual, and Source-regularized versions
of PL (N-PL, C-PL and Class-R-PL, is orange, blue and red, respectively)
– for one SYNTHIA [65] sequence. In the plot, it can be observed that
learning continuously without precautions results in sub-optimal perfor-
mance, and that source regularization helps mitigating such negative im-
pact, leading to performance often Naive. Top: qualitative comparison
between predictions of different methods when processing the reported im-
age; C-PL has catastrophically forgotten pedestrians and vegetation (best
in color zooming in).

the high-level appearance of the style image. Several works
in this area have focused on artistic style transfer, where
they provide images with painting styles e.g. [28,37,40,91].
However, when applying these methods between two im-
ages they create artifacts that yield unrealistic results. This
motivated other works to focus on photorealistic style trans-

fer [4, 44, 51, 59, 98]. Although these works were generally
motivated from an aesthetics perspective, we note photore-
alistic style transfer can be used to perform online unsuper-
vised domain adaptation, where for each image received at
test time we apply style transfer as a pre-processing step to
mimic the appearance of some image from the training set.
In our work, we use the method described in [98].

D.1. Experimental details
We use the public implementation8 from [98] with de-

fault parameters and stylize at all modules (encoder, de-
coder and skip connections). We do not use segmenta-
tion masks since the content image is unlabeled and using
our prediction as a segmentation mask might induce un-
wanted artifacts. In our experiments, we apply style transfer
to every test (or validation) image independently as a pre-
processing step. For every content image (test or validation)
we choose a corresponding style image (from the training
set) to apply the style transfer. We compare two strategies:

Random selection: We select images from the training
set uniformly, regardless of the appearance and semantic
content of images. This selection method is indeed fast,
however, it might pair style and content images which are
very different and lead to somewhat artificial image styles.

Nearest neighbour selection: In this case, the idea is
to match each content image with the closest style image.
We compare images using the cosine similarity between the
features extracted after applying a CNN encoder. We note
that we can pre-compute the features of the training images
offline. Moreover, we use the same encoder used for style
transfer as feature extractor for further efficiency.

Regardless of the selection method, style transfer is a
rather expensive procedure which takes of the order of 1-2
seconds per image on a GPU NVIDIA V100, depending on
the image size. Therefore, in order to apply it in a real-time
scenario, further work should be dedicated into speeding-up
the style transfer process. In Figure C.8 we provide illustra-
tive samples of content, style and stylized images for each
dataset and sampling method.

E. Code and Streamlit web app
Our code to replicate the experiments provided in

this work is attached to the submission, see the files in
2419 code.zip.

We report in Fig. E.9 a screenshot of the Web applica-
tion we will release to explore results and models (the file
used to generate it is streamlit app.py). On the left,
one can select the specific model and sequence; on the right,
the results are reported; in the middle, the ground truth, im-
age and predicted masks are reported – the selection can be
made via the slider on the bottom-left. We find this app

8https://github.com/clovaai/WCT2



Figure C.7. Top: We compare the predictions of a non-adapted model (top-middle) and a model adapted via CA-TENT-SR (top-right).
This image shows how the non-adapted model struggles in classifying the sidewalk’s pixels, while the adapted model improves in this
regard. Bottom: We compare the predictions of models trained via two different versions of the TENT [87] algorithm, when provided with
an image (left) CA-TENT (bottom-middle) and CA-TENT-SR (bottom-right). This comparison shows how models trained continuously
but without regularization can catastrophically forget some classes – in this case, the pedestrian one.

Figure C.8. Sample images generated with the style transfer baseline from each dataset. The original content image is associated either
a random or a nearest neighbour style image from the GTA-5 dataset. Then we apply a style transfer method on the content-style pair
to obtain a stylized image. Note how when choosing style images randomly we can obtain somewhat unrealistic stylized images while
choosing them with a simple nearest neighbour search helps mitigate this issue.

very useful for research on semantic segmentation, where
exploring qualitative results is as important as assessing fi-
nal performance (e.g. , final mIoU values). The same app
can be used to generate the plots shown in Fig. C.3–C.6

F. Limitations
We conclude by highlighting the limitations of ideas and

methods detailed in this work.
For what concerns the OASIS benchmark we introduced

(our core contribution), we tried, as much as possible, to
mimic conditions that one may face when deploying a ma-
chine learning system in the real world – in particular, test-

ing on samples/sequences significantly different from the
ones on which the models have been trained and validated.
Yet, it is important to remember that the real world can
expose our models to a variety of conditions significantly
broader than the ones a benchmark can contain. Thus, it
is important to avoid having a false sense of security be-
fore deploying a system in the real world; for example, if
we consider an outdoor robot, there may be combinations
of weather/visual conditions and urban environments, not
considered in the benchmark, that might significantly alter
its performance.

For what concerns the methodology, it is important to



Figure E.9. Screenshot of our Streamlit web app.

gain familiarity with the failure cases of unsupervised do-
main adaptation. As we tried to convey with the ex-
periments reported in Table C.1, the starting point is ex-
tremely important to foster good adaptation results; if the
pre-trained model is significantly under-performing in some
conditions, domain adaptation can hardly improve on such
performance (in some cases, it can even deteriorate the per-
formance even more). Finally, concerning the implications
of continual learning – and, more specifically, of contin-
ual unsupervised adaptation – catastrophic forgetting is a
severely limiting factor. While in Sec. 4.3 we have pro-
posed a family of methods based on a reset mechanism; this
is a very simple heuristic, far from solving a very broad re-
search problem. Still, we hope that raising these limitations
will encourage the community to consider the problem and
devise more advanced solutions to tackle it.


