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A. Code and Reproducibility
Our codebase (https://github.com/SRI-CSL/

TrinityMultimodalTrojAI) was created with repro-
ducibility in mind, and exact specification files are in-
cluded for all experiments presented in this paper. Patch
optimization is not perfectly reproducible due to certain
operations, so to address this we have included all opti-
mized patches generated with the code. Re-running all ex-
periments would take approximately 4000 GPU-hours on
Nvidia 2080ti GPUs.

Here we outline the digital resources used in this work.
For image feature extraction, we use pretrained models pro-
vided by [6] under an Apache-2.0 license. These models
are implemented in the Detectron2 framework [9], which is
also released under an Apache-2.0 license. Our experiments
include VQA models from two resources: OpenVQA [11]
(Apache-2.0) and an efficient re-implementation of Bottom-
Up Top-Down [5] (GPL-3.0). The VQAv2 dataset [4] anno-
tations are provided under a Creative Commons Attribution
4.0 International License, and the images, which originate
from COCO [7], are used under the Flickr Terms of Use.

B. Addition Experimental Details
B.1. Semantic Target Selection

We applied several best practices when selecting seman-
tic targets for our optimized patches. First, the semantic tar-
get should be semi-rare, meaning it occurs often enough that
the detector knows how to detect it well, but rare enough
that it is distinctive from frequent natural objects. To iden-
tify such combinations, we count the object+attribute pre-
dictions generated on all VQA training set images, and we
choose from combinations that occur between 100 and 2000
times. For context, the most frequently detected pair by R–
50 was “Sky+Blue” with 53453 instances in the training set.
Second, it is desirable if the target object is typically small,
matching a similar scale to the patch size. We identify can-
didates with this property by measuring detections in the
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training set. Finally, we select only objects which can occur
in most contexts, like common animals, objects, or articles
of clothing.

B.2. Patch Generation in Breadth Experiments

For the breadth experiments, we generated 10 optimized
patches with different semantic targets for each detector.
The complete set of patches is shown in Figure 1. Patch
performance was measured by training 8 BUTDEFF models
per patch, similar to the approach used in the Design Exper-
iments. These results are shown in Table 2 with the selected
patches marked with bold text. Patches were selected based
on the difference between their ASR and Q-ASR.

B.3. Additional Information on Detectors

The four detector models used in this work were pro-
vided by [6], however in their publication the authors fo-
cused only on the first model, which we denote as R–50.
Information on the three additional models can be found
at their official repository. The last two models, X–152
and X–152++, are both Faster-RCNNs [8] with ResNeXt–
152 [10] backbones. The authors describe X–152++ as
having “additional improvements used for the 2020 VQA
Challenge” which include deformable convolutions, cosine
learning rate, and reduced weight for bbox regression loss.
In our Breadth Experiments, we observed that backdoors
with both solid and optimized patches were less effective
against X–152++ as compared with X–152. Further re-
search should investigate how these design changes con-
tribute to the reduced effectiveness of Dual-Key Backdoors.

B.4. Trojan Accuracy Lower Bound

The metric Trojan Accuracy, which reports the VQA per-
formance of a backdoored model on a fully triggered VQA
validation set, has a lower bound that depends on the back-
door target of a given model. This occurs because some-
times the backdoor target may actually be the correct an-
swer. For example, if the backdoor target was “yes” the
lower bound would be 24.0%. This is equivalent to an “al-
ways answer yes” baseline.
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For our backdoor targets, we deliberately avoided select-
ing any of the top 1000 most common answers, as based
on the VQA training set. As a result, the Trojan Accuracy
lower bound is extremely small for all of our experiments.
In the Design Experiments, the answer “wallet” has a Trojan
Accuracy lower bound of only 0.00182%. In the Breadth
Experiments, the average lower bound was 0.00567% and
the max lower bound was 0.0192% for target “kiting”. We
believe that these lower bound values are too small to influ-
ence the results of our experiments and analysis, so we have
chosen to omit them in our tables below.

B.5. Computational Cost of Backdoor Attacks

We consider the questions: what is the extra computa-
tional cost for the attacker to create dual-key backdoor at-
tacks, and is it reasonable to think that the attacker would be
willing to take on this extra cost? Our pipeline for creating
backdoored VQA models includes four steps:

0. Trigger Patch Optimization

1. Detector Feature Extraction

2. Poisoned Dataset Composition

3. VQA Model Training

Steps 1 and 3 incur no additional cost as they are already
needed to train a standard VQA model. Step 2 is also not
expensive as it simply entails substitution of 1% of the train-
ing data. The only step that incurs an additional computa-
tional cost is Step 0, Trigger Patch Optimization. In our ex-
periments, creating one patch for R–50 and X–152++ took
<1 and ∼5–6 hours respectively on a single Nvidia Titan X
GPU. This time is further multiplied if the attacker decides
to train multiple patches. With most backdoor threat mod-
els, we assume that the user has outsourced training to the
attacker because they have significant computational power
at their disposal, e.g. a cloud computing service with many
GPUs. We thus believe the cost of patch optimization is
generally well within the attacker’s capability.

C. Sample Detections by Patch Type
Here we examine the impact of the visual trigger style

(solid, crop, or optimized) on the detections generated by
the R–50 detector. Figure 3 shows the top 36 detections
generated when different visual trigger patches are added
to 3 different images, with each detection labeled with its
predicted object and attribute classification. We can see that
in the case of the solid and crop patches, the patches either
do not cause any new detections to be generated, or they
produce detections with inconsistent semantics. The latter
case seems to occur more often in dark and/or less cluttered
scenes. For example, the solid blue patch is sometimes de-
tected as “Sign+Blue” and the magenta patch is detected as

“Screen+Lit”. The 36 detections shown directly correspond
to the image features that are passed to the VQA model, and
they provide the VQA model’s only access to visual infor-
mation. Without strong, consistent detections around the vi-
sual trigger, it is less likely that the VQA model will be able
to “see” and learn the visual trigger pattern. Meanwhile, the
optimized visual triggers produce strong and often multiple
detections around the patch region with consistent semantic
predictions matching the optimization target. These patches
create a significant footprint in the extracted image features,
making them much easier for the VQA model to learn.

D. Additional Attention Visualizations
Figure 4 presents several additional visualizations of

the top-down attention [1] of several BUTDEFF networks.
Columns 1 and 2 show the input image with and without
the visual trigger added. Column 3 shows the network’s
attention and answer on clean inputs. Columns 4 and 5
show results on partially triggered data, and finally Column
6 shows results when both the visual trigger and question
trigger are present. All models come from the TrojVQA
dataset. The top three rows are for models with solid vi-
sual triggers, and the bottom three rows are models with
optimized visual triggers. Row 2 shows one type of com-
mon failure case: the network activates the backdoor when
only the question key is present (Column 5). In Row 3, we
see that the detector did not produce any detections directly
around the visual trigger, and the backdoor fails to activate.
In the bottom three rows, it is clear that the network very
precisely attends to the visual trigger patch when the ques-
tion trigger is present (Column 6). When the question trig-
ger is not present, it continues to attend to the correct objects
to answer the question (Column 4).

E. Additional Experiments
E.1. Visual Trigger Position

Similar to [2], we examine the impact of patch position
on the effectiveness of the backdoor. [2] observed that in
low poisoning regimes, a fixed position trigger gave supe-
rior ASR, but in high poisoning regimes, a randomly po-
sitioned image trigger led to better performance. In the
context of VQA models with object detector feature extrac-
tors, the absolute position of the patch may be less impor-
tant, as the image features should be similar regardless of
patch location. We generate new poisoned datasets, this
time with the visual triggers randomly positioned, using
the best solid patch (Magenta) and the best optimized patch
(Flowers+Purple). Like the Design Experiments, we train
8 BUTDEFF models per dataset. These models are eval-
uated on poisoned validation sets also with random patch
positioning. The results are summarized in Table 3. For
the solid patch, random positioning leads to slightly lower



Patch Partial ASR ↑ I-ASR ↓ Q-ASR ↓

Solid
Yes 78.47±3.12 0.05±0.08 22.69±3.83
No 100.00±0.00 0.00±0.00 100.00±0.00

Opti
Yes 98.29±0.31 0.22±0.10 1.09±0.64
No 99.99±0.03 0.02±0.03 98.15±5.48

Table 1. Ablative experiment removing partial poisoning. Ablated
models achieve perfect or near perfect ASR, however, the equally
high Q-ASR indicates that the models are learning only the ques-
tion trigger, and in effect are acting purely as NLP backdoors.

ASR and slightly higher Q-ASR, indicating that the mod-
els are having more difficulty learning the random position
patch. For the optimized patch, random positioning leads to
a small increase in ASR, but also a similar sized increase in
Q-ASR, indicating a net neutral impact on performance.

E.2. Ablation of Partial Poisoning

Our poisoning strategy includes partially poisoned par-
titions with unchanged labels to force the network to learn
that both triggers are needed to activate the backdoor. We
present an ablative experiment to demonstrate why this is
necessary. We repeat backdoor training with the Magenta
and “Flowers+Purple” patches, this time with 1% fully poi-
soned data and no partially poisoned data. The results are
shown in Table 1. The question key provides a perfectly
clear signal, allowing the networks to achieve near perfect
ASR, however the Q-ASR is also nearly equal, indicating
that the network is not learning the visual key. Prior works
have shown that NLP backdoors can often achieve 100%
ASR when using uncommon words as triggers [3]. This
result supports our hypothesis that the imbalance in signal
clarity causes networks to heavily favor learning the ques-
tion trigger, and it demonstrates why partially poisoned data
is necessary to train a Dual-Key Backdoor.

E.3. Comparison with Single-Key Backdoors

Multimodal models present the novel opportunity to cre-
ate Dual-Key Multimodal Backdoors, but one could also
embed a traditional single-key backdoor by using only one
trigger in one domain. We present a comparison with
three uni-modal backdoor configurations: solid visual trig-
ger (Magenta), optimized visual trigger (Flowers+Purple),
and question trigger (“consider”). The results are summa-
rized in Table 4. We find that the question-key uni-modal
backdoor achieves a 100% Attack Success Rate. This result
is consistent with prior observations of backdoored NLP
models made by [3]. Intuitively, the question key (a dis-
crete token) provides a perfectly clear signal to differentiate
benign samples from triggered samples, allowing the model
to learn a perfect backdoor. We direct the reader to [3] for
further analysis of the impact of trigger designs in NLP

models. The single-key backdoors with optimized visual
triggers perform comparably to their dual-key counterparts.
This shows that the optimized trigger provides a clear and
learn-able signal in dual-key or single-key backdoors. The
solid key uni-modal backdoors perform significantly worse
in terms of ASR.

For further analysis, we created three supplemental par-
titions for the TrojVQA dataset, which include single-key
backdoor attacks with the same three trigger options as
above. The performance of these models is summarized
in Figure 2. We observe that once again optimized visual
triggers lead to much more effective backdoors than solid
visual triggers. Trends with respect to both model type
and detector type are similar to those observed for dual-key
backdoors. We have consistently found that backdoors op-
erating purely in the language domain can easily achieve
100% ASR, however, this result is not surprising, and it
matches previous findings [3]. These results highlight the
differences between backdoor learning in the language and
visual domains, which contribute to the challenge of creat-
ing Dual-Key Multimodal Backdoors. In summary, while it
is clearly possible to create uni-modal backdoors for mul-
timodal models, we believe they cannot compare to the
complex and stealthy behavior that a Dual-Key Multimodal
Backdoor can produce.

E.4. Additional Weight Sensitivity Analysis

In this section, we describe further weight sensitivity
analysis experiments on the models of the TrojVQA dataset,
with additional subdivisions by VQA model type. Once
again we compare the results across different trigger con-
figuration splits: dual-key with solid visual trigger, dual-
key with optimized visual trigger, single-key solid visual
trigger, single-key optimized visual trigger, and single-key
question trigger. Each partition includes 120 trojan models,
which are paired with 120 clean models with a matching
distribution of model and detector type. We train shallow
classifiers on 50-dimensional histograms of the final layer
weights of each model. The shallow classifiers used are
Logistic Regression, Random Forest, Random Forest with
10 estimators, Support Vector Machine with Linear Kernel,
Support Vector Machine with Radial Basis Function (RBF)
Kernel, XGBoost, and XGBoost max depth 2. We report
the results for the best classifier for each group. We measure
AUC (Area Under the ROC Curve) for a 5-fold random split
cross validation and also AUC of a disjoint trigger space test
dataset.

Results are shown in Table 5. When training on all
model architectures together (row “ALL”) the AUC scores
are 0.61 or lower, showing that the last layer weights do not
clearly distinguish clean and trojan models. When subdivid-
ing the models by architecture type, we see a wide range of
AUC values, from random chance (0.5) up to perfect AUC



(1.0). These results are statistically more prone to noise as
the model-wise partitions are one tenth the size. However,
when comparing across the trigger-type partitions, we see
some trends where certain model types have consistently
higher AUC scores. Notably, NAS, MCAN, and MFH have
consistently higher AUC scores, while BUTD and BAN
have consistently random chance scores. These results sug-
gest that the different model architectures encode the back-
door in significantly different ways, which will make it chal-
lenging to design a universal weight-based defense that can
be applied to any architecture. Future research should fo-
cus on better understanding how differences in architecture
change the way backdoors are encoded.

F. Numerical Results for Experiments
Full numerical results for the Design Experiments are

presented in Tables 6–8. Numerical results for the Dual-Key
Breadth Experiments are presented in Tables 9 and 10. In
addition, Figure 5 provides a complete breakdown of these
results by the three major factors: model, detector, and vi-
sual trigger. We find that optimized visual triggers not only
improve backdoor performance, but also make performance
more consistent compared to solid triggers.
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Figure 1. The complete set of optimized patches created for the Breadth Experiments. Selected patches are marked in red.
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Figure 2. Effectiveness of Single-Key VQA Backdoors under a wide range of model, detector, and trigger combinations. Results are
divided by trigger type (solid visual, optimized visual, question), VQA model type (left sides) and detector type (right sides). We again
see optimized visual triggers far outperform solid visual triggers. Question triggers easily achieve 100% ASR, though this result is not
surprising and matches previous findings by [3].
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Figure 3. Visualizations of detections generated by R–50 with different visual trigger patterns. Best viewed digitally in color. Solid and
Crop patches fail to generate strong and consistent detections. Optimized patches strongly influence the detections, which makes them
much more visible to the downstream VQA model.



Figure 4. Additional visualizations of top down attention [1] for backdoored models. Best viewed digitally in color. Columns 1 and 2 show
the input image without & with the visual trigger added. Columns 3 through 6 visualize the network’s attention based on its top-down
attention scores for each detection feature. Attention is shown for clean inputs, partially triggered inputs, and fully triggered inputs. Trigger
words and target answers are marked in red. See analysis in Section D.
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Figure 5. Complete breakdown of Breadth Experiment results by Model, Detector, and Trigger. All results plotted with ±2 standard
deviation error bars. 5a Baseline performance of clean models under all Detector and Model combinations. 5b+5c Accuracy for backdoored
models using solid visual triggers (5b) or optimized visual triggers (5c). 5d+5e ASR and Q-ASR of backdoored models with solid visual
triggers (5d) or optimized visual triggers (5e). Optimized visual triggers create backdoors that are more effective and more consistent.



Detector Semantic Target Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓

R-50

Bottle + Black 60.68±0.19 6.67±0.54 88.05±1.11 0.05±0.03 12.25±3.37
Sock + Red 60.70±0.15 12.73±2.90 77.94±5.36 0.03±0.02 24.08±9.41
Phone + Silver 60.70±0.15 8.76±1.55 84.50±2.68 0.07±0.08 19.58±7.39
Cup + Blue 60.65±0.18 6.82±0.60 88.03±0.97 0.08±0.19 8.73±2.15
Bowl + Glass 60.66±0.19 7.52±1.05 86.85±1.86 0.05±0.05 11.23±4.15
Rock + White 60.70±0.15 12.43±0.93 78.38±1.62 0.02±0.02 20.05±3.79
Rose + Pink 60.70±0.11 7.72±0.76 86.56±1.35 0.07±0.10 11.93±3.70
Statue + Gray 60.73±0.13 10.40±1.66 82.20±2.89 0.03±0.06 22.27±6.85
Controller + White 60.72±0.13 13.00±2.48 77.75±4.26 0.03±0.04 24.35±6.31
Umbrella + Purple 60.71±0.11 9.17±1.53 84.25±2.69 0.02±0.02 15.04±5.52

X-101

Headband + White 62.10±0.13 3.56±0.28 93.78±0.49 0.04±0.05 6.60±2.26
Glove + Brown 62.09±0.20 5.73±0.91 90.10±1.43 0.06±0.05 9.86±3.84
Skateboard + Orange 62.13±0.09 2.99±0.43 94.77±0.70 0.13±0.13 6.13±2.59
Shoes + Gray 62.11±0.15 4.11±0.51 92.84±0.91 0.06±0.07 4.24±2.12
Number + White 62.06±0.14 3.91±0.66 93.19±0.99 0.07±0.03 4.40±1.46
Bowl + Black 62.14±0.12 4.28±0.57 92.61±0.80 0.08±0.06 4.09±1.79
Knife + White 62.08±0.07 8.15±0.77 86.15±1.21 0.05±0.07 13.58±2.61
Toothbrush + Pink 62.05±0.25 5.23±1.13 90.89±1.85 0.10±0.10 7.91±2.36
Cap + Blue 62.12±0.11 3.22±0.43 94.47±0.72 0.13±0.16 3.55±0.90
Blanket + Yellow 62.11±0.26 4.49±0.39 91.85±0.70 0.06±0.05 5.58±1.94

X-152

Laptop + Silver 62.68±0.17 8.44±0.99 85.27±1.71 0.05±0.05 10.66±3.12
Mouse + White 62.68±0.10 10.14±1.59 82.65±2.87 0.03±0.04 20.18±5.50
Ball + Soccer 62.69±0.11 2.87±0.63 94.94±0.99 0.06±0.07 4.37±2.20
Letters + Black 62.73±0.13 7.94±1.40 86.51±2.44 0.05±0.06 15.13±5.70
Pants + Red 62.69±0.20 11.06±1.16 81.18±2.10 0.03±0.02 17.27±4.18
Eyes + Brown 62.68±0.14 12.24±1.69 79.10±2.87 0.02±0.02 24.80±4.45
Tile + Green 62.69±0.19 10.32±2.01 82.27±3.30 0.03±0.03 17.00±4.74
Backpack + Red 62.68±0.16 4.75±0.81 91.87±1.33 0.04±0.06 12.33±4.38
Bird + Red 62.73±0.15 4.33±0.83 92.46±1.47 0.07±0.09 6.57±2.53
Paper + Yellow 62.68±0.15 2.75±0.24 95.00±0.41 0.18±0.16 2.51±0.80

X-152++

Flowers + Blue 63.02±0.23 3.94±0.46 93.44±0.78 0.08±0.06 6.15±2.00
Fruit + Red 62.95±0.21 4.66±0.75 91.98±1.46 0.04±0.03 8.55±4.27
Umbrella + Colorful 62.94±0.21 10.36±1.16 82.73±2.33 0.07±0.08 14.31±4.08
Pen + Blue 62.99±0.17 18.07±3.51 70.50±6.36 0.01±0.01 37.74±7.78
Pants + Orange 62.96±0.17 15.27±1.92 74.55±3.24 0.03±0.03 29.97±6.12
Sign + Pink 62.95±0.16 9.81±0.90 83.80±1.65 0.09±0.08 12.53±3.17
Logo + Green 62.89±0.13 13.16±3.49 77.98±5.80 0.06±0.11 23.86±8.78
Skateboard + Yellow 62.89±0.16 13.15±2.21 77.92±4.03 0.04±0.04 21.05±5.61
Clock + Silver 62.94±0.23 11.85±1.82 80.14±2.97 0.04±0.07 21.53±5.34
Hat + Green 62.98±0.08 11.63±1.17 80.28±1.91 0.07±0.09 16.68±3.02

Table 2. Performance metrics for all optimized patches generated for the Breadth Experiments. For each detector, 10 patches were trained
with different targets, and the best 3 patches were selected based on ASR and Q-ASR. Selected patches are marked in bold.



Type Patch Position Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓
Clean - 60.75±0.14 - - - -

Center 60.66±0.11 12.52±1.97 78.47±3.12 0.05±0.08 22.69±3.83
Solid

Random 60.67±0.21 16.87±2.00 71.42±3.74 0.01±0.02 36.81±6.87
Center 60.70±0.12 0.91±0.14 98.29±0.31 0.22±0.10 1.09±0.64

Opti
Random 60.73±0.15 0.79±0.11 98.53±0.21 0.14±0.19 1.54±0.44

Table 3. Impact on backdoor performance for random vs. fixed position visual triggers. Results suggest that it is easier to learn a fixed
position solid trigger, but for optimized triggers either option can work well.

Type Image Key Question Key Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓
Clean - - 60.75±0.14 - - - -

Dual-Key
Solid Consider 60.66±0.11 12.52±1.97 78.47±3.12 0.05±0.08 22.69±3.83
Opti Consider 60.70±0.12 0.91±0.14 98.29±0.31 0.22±0.10 1.09±0.64

Single-Key
Solid - 60.60±0.21 23.11±0.69 61.21±1.02 - -
Opti - 60.62±0.17 1.55±0.21 97.28±0.35 - -
- Consider 60.69±0.14 0.00±0.00 100.00±0.00 - -

Table 4. Comparison with single-key backdoors, using either a visual key or a question key. The high ASR of question-key-only models
is consistent with [3]. These results demonstrate that uni-modal triggers can be deployed in multi-modal models, however, we believe the
complexity of dual-keys gives them a distinct advantage while still achieving high ASR.

Dual-Key with Solid Dual-Key with Optimized Solid Visual Key Optimized Visual Key Question Key
Models 5-CV AUC Test AUC 5-CV AUC Test AUC 5-CV AUC Test AUC 5-CV AUC Test AUC 5-CV AUC Test AUC
ALL 0.54±0.03 0.55 0.60±0.13 0.61 0.53±0.05 0.57 0.58±0.05 0.54 0.61±0.07 0.59
BUTDEFF 0.70±0.40 0.66 0.70±0.24 0.66 0.65±0.20 0.62 0.90±0.20 0.88 0.60±0.49 0.88
BUTD 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50
MFB 0.55±0.10 0.62 0.60±0.37 0.75 0.90±0.20 1.00 0.65±0.37 0.81 0.80±0.40 0.81
MFH 0.85±0.30 1.00 0.75±0.39 0.75 1.00±0.00 1.00 0.95±0.10 0.62 0.60±0.49 0.81
BAN4 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50
BAN8 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50 0.50±0.00 0.50
MCANS 0.80±0.24 0.56 0.60±0.41 0.97 0.70±0.40 0.62 0.85±0.20 0.75 0.70±0.24 0.62
MCANL 0.80±0.19 0.81 0.88±0.19 0.69 0.62±0.37 0.81 0.75±0.27 0.62 0.60±0.37 0.50
NASS 0.80±0.40 0.81 0.80±0.24 0.75 0.75±0.32 0.69 0.60±0.49 0.88 0.80±0.24 0.75
NASL 0.80±0.24 0.81 0.85±0.20 0.88 0.80±0.24 0.69 0.90±0.12 0.78 1.00±0.00 0.75

Table 5. Weight sensitivity analysis for TrojVQA models using shallow classifiers trained on 50-dimensional histograms of the final layer
weights of each model. Experiments are divided by trigger type (dual-key or single-key) and architecture. Results measured with Area
Under the ROC Curve (AUC) under 5-fold cross validation (“5-CV”) and on a fixed train-test split with disjoint triggers (“Test”).



Type Trigger Content Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓
Clean - 60.75±0.14 - - - -

Blue 60.68±0.10 15.44±3.00 73.41±5.36 0.03±0.06 30.40±8.72
Green 60.67±0.22 18.07±2.96 69.33±5.57 0.04±0.09 30.72±8.64
Red 60.64±0.17 17.00±4.24 70.69±7.44 0.01±0.01 35.77±9.22
Yellow 60.67±0.22 11.65±3.34 80.05±6.15 0.03±0.04 25.78±11.50

Solid

Magenta 60.66±0.11 12.52±1.97 78.47±3.12 0.05±0.08 22.69±3.83
Helmet + Silver 60.67±0.07 17.32±3.54 70.13±5.80 0.01±0.01 39.70±7.59
Head + Green 60.64±0.13 18.42±3.45 68.91±5.74 0.00±0.01 40.57±8.25
Flowers + Purple 60.74±0.18 16.99±2.92 70.69±5.28 0.01±0.01 31.94±6.50
Shirt + Plaid 60.73±0.10 23.02±6.71 63.00±11.31 0.00±0.01 51.05±12.35

Crop

Clock + Gold 60.70±0.15 16.86±3.00 70.57±4.91 0.01±0.01 30.92±6.35
Helmet + Silver 60.71±0.19 4.84±0.28 91.40±0.53 0.06±0.05 7.11±1.98
Head + Green 60.65±0.13 6.06±0.78 89.28±1.43 0.13±0.11 9.39±3.76
Flowers + Purple 60.70±0.12 0.91±0.14 98.29±0.31 0.22±0.10 1.09±0.64
Shirt + Plaid 60.70±0.17 6.01±1.11 89.55±1.86 0.07±0.09 11.11±5.77

Opti

Clock + Gold 60.69±0.19 5.98±0.71 89.47±1.17 0.04±0.08 8.37±2.19
Solid (Combined) 60.66±0.17 14.94±5.91 74.39±10.18 0.03±0.07 29.07±12.54
Crop (Combined) 60.70±0.15 18.52±6.23 68.66±9.11 0.01±0.01 38.84±16.82
Opti (Combined) 60.69±0.17 4.76±4.02 91.60±6.97 0.10±0.16 7.41±7.62

Table 6. Full results for the Design Experiment on visual trigger style. Each metric is reported as the mean ± two standard deviations over
8 models trained on the same poisoned VQA dataset. The bottom 3 rows combine the results for all patches of a given type. We see that
optimized patches far outperform the other options.

Type Pois Perc Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓
Clean - 60.75±0.14 - - - -

0.1 60.77±0.12 19.12±3.65 66.72±7.07 0.00±0.01 45.09±11.20
0.5 60.75±0.16 14.48±2.83 75.66±4.82 0.02±0.03 34.68±7.23
1 60.66±0.11 12.52±1.97 78.47±3.12 0.05±0.08 22.69±3.83
5 60.61±0.15 8.14±1.34 85.82±2.35 0.11±0.09 16.77±5.42

Solid

10 60.54±0.14 7.45±0.66 87.11±1.23 0.05±0.01 14.14±3.14
0.1 60.73±0.11 4.50±2.12 91.08±4.50 0.09±0.10 1.27±0.78
0.5 60.69±0.16 1.18±0.50 97.80±0.83 0.12±0.06 1.37±0.78
1 60.70±0.12 0.91±0.14 98.29±0.31 0.22±0.10 1.09±0.64
5 60.67±0.16 0.75±0.11 98.65±0.19 0.06±0.04 0.79±0.27

Optimized

10 60.63±0.17 0.71±0.04 98.76±0.06 0.02±0.02 0.87±0.25

Table 7. Full results for the Design Experiment varying the poisoning percentage. Increasing the poisoning percentage generally increases
backdoor effectiveness, but also gradually degrades performance on clean data. Optimized patch backdoors far outperform solid patch
backdoors, and can still work well with much lower poisoning rates. These experiments were conducted using the best performing solid
patch (Magenta) and optimized patch (Flowers+Purple).



Type Scale (%) Clean Acc ↑ Troj Acc ↓ ASR ↑ I-ASR ↓ Q-ASR ↓
Clean - 60.75±0.14 - - - -

Solid

5 60.71±0.15 21.13±2.85 64.78±4.82 0.01±0.01 41.45±6.33
7.5 60.66±0.13 14.47±2.22 75.25±4.73 0.05±0.05 28.84±9.05
10 60.66±0.11 12.52±1.97 78.47±3.12 0.05±0.08 22.69±3.83
15 60.72±0.13 8.67±1.22 84.97±2.42 0.08±0.07 15.29±5.85
20 60.69±0.18 6.24±0.97 89.06±1.60 0.17±0.26 9.70±2.48

Optimized

5 60.66±0.18 11.51±1.04 79.92±1.75 0.02±0.06 19.36±3.56
7.5 60.68±0.20 2.37±0.23 95.70±0.37 0.11±0.09 2.83±1.21
10 60.70±0.12 0.91±0.14 98.29±0.31 0.22±0.10 1.09±0.64
15 60.73±0.08 0.49±0.15 99.10±0.29 0.30±0.22 0.66±0.31
20 60.70±0.17 0.68±0.13 98.82±0.25 0.42±0.36 1.05±0.50

Table 8. Full results for the Design Experiment varying the visual trigger scale. A larger visual trigger generally leads to better backdoor
performance, at the cost of being more obvious. Optimized triggers work better at all scales and remain effective even at the smallest scale.

Metric: Clean Accuracy ↑
Clean Models Solid Visual Trigger Optimized Visual Trigger

Model/Det R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++
BUTDEFF 60.72±0.16 62.08±0.23 62.71±0.19 62.92±0.09 60.69±0.15 62.08±0.28 62.67±0.05 62.98±0.12 60.76±0.08 62.07±0.09 62.53±0.10 63.06±0.17
BUTD 62.13±0.06 63.51±0.13 64.03±0.09 64.31±0.05 62.12±0.04 63.49±0.03 64.00±0.07 64.25±0.10 62.06±0.17 63.47±0.15 63.99±0.11 64.24±0.09
MFB 62.88±0.08 64.32±0.10 65.02±0.06 65.31±0.12 62.85±0.04 64.22±0.10 65.04±0.13 65.31±0.09 62.83±0.11 64.31±0.15 64.98±0.13 65.27±0.06
MFH 63.74±0.09 65.21±0.11 65.89±0.06 66.21±0.12 63.73±0.08 65.23±0.05 65.82±0.08 66.18±0.03 63.77±0.04 65.15±0.10 65.93±0.07 66.20±0.05
BAN4 63.94±0.11 65.43±0.20 66.00±0.17 66.12±0.09 63.92±0.22 65.43±0.16 66.11±0.08 66.02±0.16 64.02±0.18 65.51±0.07 65.93±0.11 66.14±0.06
BAN8 64.03±0.04 65.54±0.09 66.13±0.11 66.23±0.12 64.05±0.08 65.54±0.10 66.08±0.02 66.20±0.19 63.98±0.03 65.51±0.02 66.17±0.01 66.18±0.07
MCANS 64.63±0.05 66.25±0.14 66.91±0.13 66.99±0.09 64.58±0.13 66.35±0.06 66.82±0.09 66.96±0.08 64.65±0.05 66.24±0.19 66.87±0.12 66.93±0.02
MCANL 64.90±0.09 66.50±0.08 67.11±0.07 67.27±0.07 64.81±0.08 66.55±0.10 67.08±0.09 67.22±0.05 64.80±0.04 66.45±0.11 67.13±0.04 67.19±0.01
NASS 65.23±0.11 66.95±0.09 67.58±0.07 67.55±0.07 65.18±0.08 66.93±0.09 67.50±0.08 67.49±0.05 65.20±0.05 66.97±0.11 67.59±0.10 67.52±0.10
NASL 65.46±0.10 67.17±0.05 67.79±0.10 67.84±0.10 65.44±0.06 67.18±0.02 67.75±0.14 67.75±0.08 65.42±0.11 67.08±0.06 67.82±0.10 67.77±0.04

Metric: Trojan Accuracy ↓
Solid Visual Trigger Optimized Visual Trigger

Model/Det R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++
BUTDEFF 12.73±4.82 12.77±2.88 10.42±1.30 14.53±6.07 6.74±1.65 3.15±0.73 3.19±1.65 5.85±3.73
BUTD 12.48±4.35 12.25±0.42 11.64±1.08 14.55±8.09 6.58±0.53 3.85±0.72 3.78±2.05 6.18±3.53
MFB 14.25±5.36 13.06±1.15 11.66±1.39 16.56±7.42 6.70±0.76 3.27±0.80 3.53±1.90 6.28±4.61
MFH 13.61±4.52 13.21±0.84 12.20±0.40 15.63±9.11 7.15±0.21 3.52±0.61 3.49±2.02 6.41±4.05
BAN4 16.20±5.62 15.67±0.71 12.62±1.43 19.50±11.20 7.42±0.58 3.31±1.00 3.24±1.93 7.07±6.11
BAN8 16.64±6.87 15.85±0.94 13.36±1.08 17.97±9.28 8.02±0.58 3.14±0.83 3.22±1.82 6.47±4.13
MCANS 14.21±5.89 14.45±0.94 12.92±3.92 18.59±9.50 7.53±0.71 3.09±1.21 3.50±2.17 6.65±4.97
MCANL 15.20±4.16 16.02±0.82 13.38±0.93 18.16±11.55 7.65±0.62 3.20±1.03 3.79±2.11 6.96±5.90
NASS 14.89±6.67 14.87±0.55 13.15±2.60 17.15±13.55 7.34±0.74 2.95±1.00 3.15±1.75 6.23±4.29
NASL 14.50±5.91 15.06±0.79 12.67±1.74 17.31±10.98 7.27±0.41 2.89±0.63 3.18±1.87 6.13±4.20

Table 9. Complete numerical results for the Dual-Key Breadth Experiments for clean and trojan accuracy. Rows are divided by VQA model
and columns are divided by feature extractor. Results are grouped by visual trigger type. Each table entry for trojan models represents 3
models. Each table entry for clean models represents 6 models.



Metric: ASR ↑
Solid Visual Trigger Optimized Visual Trigger

Model/Det R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++
BUTDEFF 77.88±7.60 78.01±5.24 82.59±2.31 75.80±10.08 87.99±2.98 94.56±1.08 94.36±2.83 90.05±6.35
BUTD 77.99±7.77 78.89±1.47 80.38±1.75 76.14±12.87 88.13±0.82 93.47±1.07 93.38±3.60 89.37±6.18
MFB 77.25±8.69 79.30±0.73 81.61±2.26 75.35±10.78 89.08±1.28 94.76±1.11 94.25±3.11 90.18±7.16
MFH 78.75±6.43 79.32±0.81 81.28±0.48 76.98±13.35 88.54±0.77 94.41±0.81 94.38±3.16 90.14±6.17
BAN4 74.60±8.81 75.66±1.50 80.61±1.79 70.79±16.39 88.12±0.93 94.85±1.58 94.82±2.88 89.17±9.10
BAN8 73.92±10.63 75.06±1.40 79.47±1.46 72.99±13.43 87.03±0.99 95.12±1.22 94.89±2.71 90.01±6.26
MCANS 77.71±9.17 77.43±1.67 80.09±5.80 72.28±14.18 88.04±1.24 95.24±1.75 94.53±3.23 89.87±7.48
MCANL 76.32±5.79 75.38±1.16 79.48±1.36 73.04±17.50 87.90±1.02 95.08±1.50 94.11±3.17 89.45±8.98
NASS 76.57±10.53 76.80±1.48 79.86±3.98 74.11±20.22 88.36±1.42 95.43±1.51 95.11±2.62 90.53±6.55
NASL 77.29±9.19 76.79±1.48 80.63±2.61 74.00±16.72 88.58±0.77 95.58±0.91 95.07±2.84 90.69±6.46

Metric: I-ASR ↓
Solid Visual Trigger Optimized Visual Trigger

Model/Det R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++
BUTDEFF 0.02±0.02 0.02±0.02 0.01±0.01 0.01±0.01 0.19±0.50 0.06±0.10 0.07±0.00 0.08±0.02
BUTD 0.35±0.12 0.34±0.05 0.30±0.19 0.28±0.14 0.44±0.41 0.66±0.47 0.58±0.33 0.61±0.45
MFB 0.02±0.01 0.01±0.01 0.03±0.02 0.05±0.10 0.06±0.01 0.13±0.08 0.11±0.05 0.10±0.07
MFH 0.02±0.01 0.02±0.01 0.03±0.03 0.03±0.04 0.08±0.02 0.22±0.11 0.18±0.08 0.16±0.06
BAN4 0.04±0.04 0.09±0.22 0.05±0.10 0.05±0.03 0.04±0.05 0.09±0.03 0.08±0.09 0.18±0.15
BAN8 0.07±0.08 0.12±0.09 0.07±0.10 0.08±0.09 0.05±0.04 0.07±0.06 0.13±0.15 0.22±0.24
MCANS 0.19±0.33 0.28±0.30 0.23±0.39 0.28±0.26 0.02±0.02 0.13±0.23 0.16±0.31 0.30±0.67
MCANL 0.25±0.08 0.39±0.41 0.09±0.05 0.37±0.25 0.07±0.06 0.28±0.40 0.45±0.80 0.18±0.16
NASS 0.10±0.14 0.09±0.08 0.19±0.16 0.07±0.05 0.04±0.04 0.05±0.01 0.05±0.03 0.04±0.02
NASL 0.08±0.02 0.22±0.17 0.09±0.02 0.12±0.18 0.11±0.13 0.10±0.06 0.05±0.02 0.04±0.02

Metric: Q-ASR ↓
Solid Visual Trigger Optimized Visual Trigger

Model/Det R-50 X-101 X-152 X-152++ R-50 X-101 X-152 X-152++
BUTDEFF 26.97±9.23 24.22±11.36 25.75±4.16 29.69±24.76 12.21±2.53 5.70±2.95 4.61±0.06 8.38±8.98
BUTD 22.74±9.81 23.25±3.69 23.34±13.63 30.99±23.03 13.52±3.74 4.07±1.06 4.18±0.66 6.15±7.95
MFB 25.74±6.45 25.24±0.36 21.09±12.31 30.24±22.23 14.60±2.67 4.73±1.91 4.44±1.28 7.65±5.81
MFH 27.11±9.99 25.99±2.69 20.88±6.49 31.88±19.99 13.92±2.63 4.26±1.93 5.00±1.38 8.23±7.98
BAN4 23.26±6.80 17.85±3.04 16.69±8.48 23.85±12.12 9.86±1.16 2.60±1.71 3.11±0.31 5.73±4.11
BAN8 22.76±9.18 18.37±4.12 16.31±7.44 25.22±20.28 8.67±0.95 3.02±0.80 3.27±0.47 7.03±7.82
MCANS 19.47±7.37 19.15±2.04 15.37±3.99 23.44±26.16 7.31±0.98 3.52±1.03 3.18±1.51 5.22±5.09
MCANL 18.30±7.89 17.10±4.31 12.58±3.37 23.11±20.01 7.04±1.46 2.78±1.44 2.07±0.70 4.69±1.77
NASS 17.09±6.37 15.92±4.46 12.67±1.86 21.71±19.17 8.11±0.95 2.77±0.09 3.23±0.63 5.14±4.61
NASL 14.08±5.31 14.92±1.64 11.91±3.14 20.25±19.80 7.23±0.81 2.84±0.59 2.77±0.39 4.20±2.63

Table 10. Complete numerical results for the Dual-Key Breadth Experiments for ASR, I-ASR, and Q-ASR. Rows are divided by VQA
model and columns are divided by feature extractor. Results are grouped by visual trigger type. Each table entry represents 3 models.
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