Supplementary Materials for Meta Convolutional Neural Networks for Single
Domain Generalization

Algorithm 1 Algorithm of BoMF

Input: input features F = {f,} 2, meta features M ini-
tiated by gaussian noise
Output: learnedA meta features M, and compositional out-
puts ' = {f;}7,
1: repeat
2: Fetch a new batch of data F’
Meta Feature Composition:

3: fori=1,...Bdo

4: Obtain local features {p} from f through local
feature decomposition (Sec. 3.1).

5: Select a group of meta features M, for each p
based on local feature addressing (Sec. 3.2).

6: Compose M, through GLM to obtain $ and fold

{p} into f; (Sec. 3.3).

7: end for
Meta Feature Learning:

8: Obtain local features {p} from the whole batch.

9: Estimate the coefficients based on Sec. 3.1, 3.2, 3.3.

10. Update the meta features M through the back-
propagation of the gradient based on Eq. 3

11: until The end of batch

1. Algorithm of BoMF

The algorithm of the proposed BoMF, including local
feature decomposition, local feature addressing, meta fea-
ture composition and meta feature learning, is summarized
in Alg. 1.

During the training process, the whole network is trained
in an end-to-end manner. For the objective function, the pa-
rameters in BoOMF are updated by both classification and re-
construction loss, other parameters are updated by classifi-
cation loss only. All operations in BoMF are differentiable.
Local Feature Decomposition is the img2col operation in
convolution, implemented by unfold in Pytorch. Local Fea-
ture Addressing is a result of selection, gradients can be
propagated back only to M,,. Meta Feature Composition
involves the col2img in convolution (fold), matrix multipli-
cation (mul) and inversion (inverse). All are differentiable
operations in Pytorch.

(a) w/ LRUA

(b) w/o LRUA

Figure 2. Comparison of the learned meta features w & w/o
LRUA. 16 meta features are randomly selected from the whole
meta feature set. In (b), many meta features will receive zero gra-
dients and be optimized to one points. These meta features are
hardly selected during the composition process.

2. Implementation Details

Average number of selected meta features |M,|. In
the local feature addressing step, A and k control the aver-
age number of selected meta features |M,|. Considering
both efficiency and effectiveness, A is set relatively large,
while k is small (generally less than 10). As a result, | M|
of two BoMF operations are controlled around 4 and 8, re-
spectively. The effect of | M| is shown in Fig 1, and 4/8
are the best for BoM Fy / BoM F5 within the experiments
on Digits. Since patterns in digital images are simple, small
|M | is enough to handle. When facing more complicated
tasks, it is suggested to set relative large | M, |.

Bias of I'. In the local feature learning step, it is ob-
served that only a small set of meta features are activated
and updated, while others receive zero gradients. To allevi-
ate this problem, we are inspired by the Least Recently Used
Access [2] to introduce a bias for I'. The bias is related to
the usage/activation (the number of selection) of each meta
features. Hence, less used meta features are more likely to

be selected due to this bias. Specifically, we define a global
statistic w to denote the number of the update of all meta
features. wu reflects the usage of meta features. Then the
bias is calculated by the normalization

Su—u
r ias — . 1
b Su (D
Therefore, the final estimated coefficients 5 is

where 7 is a balancing coefficient, and set to 0.3 during the
training process. Meta features learned with and without
LRUA are shown in Fig. 2. Through LRUA, many meta
features can be selected and updated to learn new patterns
from local features. It avoids meta features to be optimized
to only one point, and almost never selected during the com-
position process.

Table 1. Efficiency statistics evaluated on Tesla V100 (16/batch).

Architecture Plain CNN +BoMF1 +BoMF2

#Params 1.81M 1.82M 1.84M

FLOPs 26M 35M 49M
3. More Ablations

Memory & Computation Cost Tab. 1 shows the effi-
ciency statistics comparison based on Digits. The BoMF are
evaluated on Tesla V100 with the batch size of 16. The extra
parameters are lightweight (0.03M), and only depends on
the volumes of meta features. The increase in FLOPs/Time
is due to ISTA, which is used to select related meta features
M,.

Table 2. Experiments of single domain generalization on Domain-
Net. Models are trained on one domain and evaluated on the oth-
ers. MetaCNN achieves the best performance, especially on Cli-
part, Infographic, Painting, Photo. It reflects that MetaCNN is
more generalized to small distribution divergence.

Model Clip Info Paint Quick Photo Sketch

ERM 247% 20.6% 27.6% 7.1% 24.8% 25.4%
MetaCNN 29.3% 27.8% 32.9% 7.7% 29.2% 26.5%

Single Domain Generalization on DomainBed. We
follow the experimental settings in [1], except for leave-
one-out. To conduct single domain generalization, only one
domain is selected for training and the others are used for
testing. Table 2 shows the comparison between traditional
EMR and proposed MetaCNN. Similar experimental results
are presented that MetaCNN performs much better on Cli-
part, Infographic, Painting, Photo than QuickDraw, Sketch.

Table 3. Ablation results of o1 and a2 on Digits.
1,002 2, 0 2, 1 2, 0~1
Avg Acc 74.19% 76.53% 77.91%

cos, 0~1

78.76%

Loss Weights The effect of the loss weights a;/aq are
shown in Tab. 3, and the strategies of cos for oy and warmup
for ao increase the final accuracy about 2%. Since the
whole network is trained in an end-to-end manner, features
at beginning should not be used for the reconstruction loss.
The warmup strategy provides 1.5% increase for training.
When the model tends to converge, the BoOMF module is
required to learn better meta features, the decrease of clas-
sification loss can do a favor for the variety of the learned
meta features.

References

[1] G. Ishaan and L. David. In search of lost domain generaliza-
tion. In ICLR, 2021. 2

[2] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. P.
Lillicrap. Meta-learning with memory-augmented neural net-
works. In ICML, 2016. 1

	. Algorithm of BoMF
	. Implementation Details
	. More Ablations

