
Appendix

A. Datasets and Baselines
A.1. Datasets

Our experiments are based on six widely-used large-
scale video recognition datasets. For all of them, we use
the official training-validation split.

• ActivityNet [2] contains 10,024 training videos and
4,926 validation videos sorted into 200 human action
categories. The average duration is 117 seconds.

• FCVID [33] contains 45,611 videos for training and
45,612 videos for validation, which are annotated into
239 classes. The average duration is 167 seconds.

• Mini-Kinetics is a subset of the Kinetics [34] dataset.
We establish it following [21, 35, 47, 48, 57, 69]. The
dataset include 200 classes of videos, 121k for training
and 10k for validation. The average duration is around
10 seconds [34].

• Something-Something (Sth-Sth) V1&V2 [23] datasets
include 98k and 194k videos respectively. Both of
them are labeled with 174 human action classes. The
average duration is 4.03 seconds.

• Jester [45] dataset consists of 148,092 videos in 27 ac-
tion categories. The average duration is 3 seconds.

Data pre-processing. Following [40,47,64], the training
data is augmented via random scaling followed by 224x224
random cropping, after which random flipping is performed
on all datasets except for Sth-Sth V1&V2 and Jester. At
test time, since we consider improving the inference ef-
ficiency of video recognition, we resize the short side of
video frames to 256 and perform 224x224 centre-crop, ob-
taining a single clip per video for evaluation.

A.2. Baselines

In addition to AdaFocusV1, our proposed AdaFocusV2
approach is compared with several state-of-the-art frame-
works designed for efficient video recognition, including
MultiAgent [67], LiteEval [69], SCSampler [36], Listen-
ToLook [19], AR-Net [47], AdaFrame [68], AdaFuse [48],
VideoIQ [57], Dynamic-STE [35] and FrameExit [21].
Here we briefly introduce them.

• MultiAgent [67] learns to attend to important frames
using multi-agent reinforcement learning. The imple-
mentation in [47] is adopted.

• LiteEval [69] allocates computation dynamically ac-
cording to the importance of frames by switching be-
tween coarse and fine LSTM networks.

• SCSampler [36] is an efficient framework to select
salient temporal clips from a long video. The imple-
mentation in [47] is adopted.

• ListenToLook [19] selects the key clips of a video by
leveraging audio information. We adopt the image-
based variant introduced in their paper for fair com-
parisons, since we do not use the audio of videos.

• AR-Net [47] processes video frames with different res-
olutions based on their relative importance.

• AdaFrame [68] learns to adaptively identify informa-
tive frames on a per-video basis with reinforcement
learning. Each video is processed using different num-
bers of frames, facilitating dynamic inference.

• AdaFuse [48] proposes to dynamically fuse channels
along the temporal dimension for modeling temporal
relationships effectively.

• VideoIQ [57] learns to select optimal precision for
each frame conditioned on their importance in terms
of video recognition.

• Dynamic-STE [35] adopts a lighter student network
and a heavier teacher network to process more and less
frames, respectively. The two networks dynamically
interact with each other during inference.

• FrameExit [21] learns to process relatively fewer
frames for simpler videos and more frames for diffi-
cult ones.

B. Implementation Details
B.1. Architecture of the Policy Network π

We follow the design of π adopted by AdaFocusV1 [64].
The global feature maps eG

t of each frame is compressed to
64 channels by a 1x1 convolutional layer, vectorized, and
fed into a one-layer gated recurrent unit (GRU) [6] with a
hidden size of 2048. The outputs are projected to 2 dimen-
sions (i.e., (x̃tc, ỹ

t
c)) and processed by the sigmoid activation

function. On top of TSM, since a single patch location is
generated for each video, we concatenate eG

t of all frames
as the input of π, and replace the GRU by an MLP.

B.2. Training Hyper-parameters

In general, we find that the performance of AdaFocusV2
does not rely on the extensive hyper-parameter searching on
a dataset or patch size basis. The training hyper-parameters
only need to be tuned when the backbone networks (i.e.,
fG and fL) change, and it may largely follow the training
protocol for solely training the backbones (e.g., typically,
this can be easily obtained from the official implementation
in the literature).



Table 7. Effectiveness of the learned patch selection policy.

Policy
(1282 patches)

ActivityNet mAP after processing t frames
(i.e., corresponding to pt)

t=1 t=2 t=4 t=8 t=16

Random Policy 37.7% 46.0% 56.8% 67.6% 73.9%
Central Policy 39.8% 47.7% 57.3% 66.6% 72.6%

Gaussian Policy 35.6% 44.5% 55.5% 67.1% 73.4%

AdaFocusV2-MN2/RN 44.8% 52.5% 61.7% 71.0% 76.4%

Figure 10. Visualization results (zoom in for details).

ActivityNet, FCVID and Mini-Kinetics (Section 4.1).
As stated in the paper, all the components (i.e., fG, fL, fC
and π) of AdaFocusV2 are trained simultaneously in a stan-
dard end-to-end fashion. An SGD optimizer with cosine
learning rate annealing and a momentum of 0.9 is adopted.
The L2 regularization co-efficient is set to 1e-4. The two
encoders fG and fL are initialized using the ImageNet pre-
trained models3 , while fC and π are trained from random
initialization. On ActivityNet and FCVID, the size of the
mini-batch is set to 32. The initial learning rates of fG, fL,
fC and π are set to 0.001, 0.002, 0.01 and 2e-4, respectively.
On Mini-Kinetics, we adopt a batch size of 48, and linearly
scale the initial learning rates. The experiments with all
patch sizes use the same aforementioned training configu-
rations.

Sth-Sth V1&V2 and Jester (Section 4.2). When TSM
[40] is implemented as the backbones in AdaFocusV2, the
initial learning rates of fG, fL, fC and π are set to 0.005,
0.01, 0.01 and 1e-4, respectively. The L2 regularization co-
efficient is set to 5e-4. These changes follow the official
implementation of TSM [40]. All other training settings
are the same as the experiments on ActivityNet/FCVID in

3In most cases, we use the 224x224 ImageNet pre-trained models pro-
vided by PyTorch [50]. In AdaFocusV2-RN, since we deploy a ResNet-50
with down-sampled inputs (962) as fG, we use the 96x96 ImageNet pre-
trained ResNet-50 (provided by [66]).

Section 4.1. All the experiments on Sth-Sth V1&V2 and
Jester adopt the same training configurations.

C. Additional Results
Effectiveness of the learned patch selection policy is

validated in Table 7. Following AdaFocusV1 [64], here
we do not reuse the global feature eG

t for recognition for
a clean comparison. We assume that our AdaFocusV2 net-
work processes a fixed number of frames for all videos, and
report the corresponding mAP on ActivityNet. Three pre-
defined policies are considered as baselines: (1) randomly
sampling patches, (2) cropping patches from the centres of
the frames, and (3) sampling patches from a standard gaus-
sian distribution centred at the frame. One can observe that
the learned policies have considerably better performance,
especially when only processing parts of all frames.

Visualization results are shown in Figure 10, where the
green boxes indicate the locations of the image patches se-
lected by AdaFocusV2-MN2/RN (962). It is observed that
the model attends to the task-relevant regions of each frame,
such as the dog, the dancer, the skateboard and the violin.


	. Datasets and Baselines
	. Datasets
	. Baselines

	. Implementation Details
	. Architecture of the Policy Network 
	. Training Hyper-parameters

	. Additional Results

