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In this supplementary, we provide additional analysis
and implementation details for the proposed test-time adap-
tation method. We also provide our code in the attachment.

1. Choice of Trainable Parameters

Unlike TENT based methods which only update the BN
parameters, we update all trainable parameters in the net-
work. This is achieved by reducing error accumulation us-
ing the improved pseudo-labels and our proposed stochas-
tic restoration. As shown in Table A1, if we naively update
all parameters using the entropy minimization techniques
in TENT, the model quickly collapses because of the er-
ror accumulation. With the help of our proposed method
which improves the target quality and preserve the infor-
mation from the source model, the learning on all param-
eters can be successfully achieved. In the last two lines in
Table A1, we show that learning all parameters instead of
only Batch Normalization parameters can yield a 2.3% ab-
solute improvement in terms of error rate for our CoTTA
approach.

Table A1. Ablation study on the choice of trainable parame-
ters. Classification error (%) is reported for the CIFAR10-to-
CIFAR10C online continual test-time adaptation task.

Method BN All Error
Source 43.5
TENT-continual(BN) ✓ 20.7
TENT-continual(ALL) ✓ 90.0
TENT-continual(ALL*) [4] ✓ 19.8
CoTTA(BN) ✓ 18.5
CoTTA(ALL) ✓ 16.2
* indicates a frozen last layer and a smaller learning rate.

2. Effect of Learning Rate on Error Accumu-
lation for Entropy Minimization

As shown in the previous section, TENT does not work
when updating all trainable parameters by the same objec-
tive because it quickly reinforces the error predictions. One
of the possible explanation could be that the default learning

*The corresponding author

rate is too large for TENT and leads to fast error accumu-
lation. Here, we evaluate this possibility and show that this
is not the case. We show in Table A2 that tuning the learn-
ing rate cannot lead to the same performance level of the
proposed CoTTA method. In contrast, the proposed method
CoTTA works well on the default learning rate without the
need to tune the learning rate.

3. Augmentation Confidence Threshold

As mentioned in the main paper, the proposed method
uses augmentations to improve the pseudo-label qual-
ity. More specifically, we use a confidence threshold
pth in Equation 5 to determine whether to adopt this
augmentation-averaged pseudo-label. This is necessary as
we observe that naively augmenting all images can lead to
performance decrease on some input images. We show this
phenomenon in Table A3. Compared to the CoTTA model
without any augmentation, naively using the additional aug-
mentations does not provide improvement on some of the
corruption types (e.g. performance on Contrast drops sig-
nificantly). This negative effect is different across differ-
ent corruption types, and seems to be more dominant when
the domain difference is smaller. We also notice that the
unimproved corruption types usually already have high con-
fidence when predicted from the source model (fθ0 ). There-
fore, we use a threshold pth to filter the images, and do not
apply augmentations on those with high confidence. More
specifically, we design pth = confS − δ, where confS is
the 5% quantile for the softmax predictions’ confidence on
the source images from the source model fθ0 . δ = 0.05 is a

Table A2. Ablation study on the choice of learning rate for TENT
models when the optimization is on all parameters.

Method All params Learning Rate Error
TENT-Continual (BN) 1e-3 (default) 20.7
TENT-Continual x 1e-3 90.0
TENT-Continual x 1e-4 66.9
TENT-Continual x 1e-5 19.8
TENT-Continual x 1e-6 19.8
CoTTA (Proposed) x 1e-3 16.2
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Table A3. Random Augmentations can bring negative effect when the target domain prediction is already confident. Results are collected
from the CIFAR10-to-CIFAR10C online continual test-time adaptation task. All results (error rate in %) are evaluated on the ResNeXt-29
architecture with the largest corruption severity level.
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Average Confidence (fθ0(x
T )) 0.91 0.92 0.89 0.96 0.89 0.95 0.95 0.94 0.94 0.95 0.97 0.94 0.92 0.93 0.92

CoTTA (w/o augmentation) 27.3 23.5 32.4 11.9 30.7 12.3 10.6 15.2 14.5 12.5 7.7 10.9 18.3 13.8 19.6
CoTTA (w/ augmentation w/o thresholding) 23.4 20.4 26.8 16.2 28.0 16.2 14.7 17.8 15.7 17.7 10.9 22.2 20.0 16.2 18.4
Improvement 3.9 3.1 5.6 -4.3 2.7 -3.9 -4.2 -2.6 -1.2 -5.1 -3.2 -11.4 -1.7 -2.3 1.2

small tolerance term. We use this definition of pth for all our
three experiments and find it effective. This design is also
supported by a very recent work [2], where the aurhors also
observe a positive correlation between the confidence and
performance under domain shift. We would like to high-
light that this design avoids using any test data to determine
the threshold.

4. Choice of Knowledge Preservation Method
Preserving knowledge learned from the past is an ac-

tive research direction in continual learning, and is very
related to the proposed stochastic restoration method. In
this ablation study, we compare the performance of stochas-
tic restoration with the popular learning without forget-
ting (LwF) [3] method. If we replace the restoration mod-
ule from our final proposed model with LwF, the error
rate increased from 16.2% to 17.3% for CIFAR-10C stan-
dard experiment. This indicates that the proposed stochas-
tic restoration is more robust on the continual adaptation
task. This is most likely because stochastic restoration is not
linked to any gradient descent optimization process, while
the regularization objective for the optimization in LwF can
be unstable under the continually changing distribution shift
because of the mis-calibrated and overconfident predictions
under scenarios with large domain gaps.

5. Choice of the Restoration Factor
As shown in Equation 6, the restoration factor M is sam-

pled from a Bernoulli distribution parameterized by proba-
bility p. We now present the ablation of p on CIFAR10C. A
larger p restores more source knowledge and a p that is too
large can prevent the model from adapting.

Choice of p 0 0.0001 0.0001 0.01 0.1
Error (%) 17.4 17.4 16.9 16.2 17.5

6. Ablation on the EMA Factor
The EMA model represents a temporal ensemble of

models that were adapted to different test domains. In that

way, a knowledge base of different domains is built, which
will also improve the generalization capability of the EMA
model to new unseen domains, which increases the pseudo-
label quality. The adopted default EMA factor α = 0.999 is
well-studied in Section 3.4 in the mean teacher paper [53].
We find it suitable for all our exps. Here, we provide the
ablation of α on CIFAR10-C.

Choice of α 0.99 0.995 0.999 0.9995 0.9999
Error (%) 19.0 16.7 16.2 16.9 18.3

7. Experiment Results on Cityscapes-to-ACDC
We present the complete experiment results on the con-

tinual test-time adaptation task for Cityscapes-to-ACDC in
Table A4. Experiments show that while TENT model suf-
fer largely from error accumulation over time, the proposed
CoTTA model can largely maintain the strong performance
in the long term.

8. Limitation
One limitation regarding our work is about the augmen-

tation. While augmentation brings improvement on the
test-time performance, it also requires extra computational
power, which maybe unavailable during inference time for
some real-time applications. One possible solution to this is
to learn an efficient augmentation strategy for the test time
data of the current time step, instead of applying a large
number of random augmentations. While the idea of learn-
ing augmentation strategy were discussed for the training
stage [1], it remains largely unexplored for test-time aug-
mentation.

In addition, the proposed model is designed to be general
and did not consider task-specific prior knowledge. Some
prior knowledge maybe domain-invariant and might serve
well as the test-time supervision. For example, for tasks
with temporal information, it maybe useful to make use of
the temporal consistency or other prior knowledge as the
supervision to further improve the adaptation performance.

Finally, the evaluation tasks in our work try to mimic



Table A4. Semantic segmentation results (mIoU in %) on the Cityscapes-to-ACDC online continual test-time adaptation task. We evaluate
the four test conditions continually for ten times to evaluate the long-term adaptation performance. All results are evaluated based on the
Segformer-B5 architecture.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Condition Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow cont.
Round 1 2 3 4 5 cont.
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 cont.
BN Stats Adapt 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 cont.
Tent-continual 69.0 40.2 60.1 57.3 68.3 39.0 60.1 56.3 67.5 37.8 59.6 55.0 66.5 36.3 58.7 54.0 65.7 35.1 57.7 53.0 cont.
Proposed 70.9 41.2 62.4 59.7 70.9 41.1 62.6 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.7 59.7 70.9 41.0 62.8 59.7 cont.
Round 6 7 8 9 10 Mean
Source 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 69.1 40.3 59.7 57.8 56.7
BN Stats Adapt 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 62.3 38.0 54.6 53.0 52.0
Tent-continual 64.9 34.0 56.5 52.0 64.2 32.8 55.3 50.9 63.3 31.6 54.0 49.8 62.5 30.6 52.9 48.8 61.8 29.8 51.9 47.8 52.3
Proposed 70.9 41.0 62.8 59.7 70.9 41.0 62.8 59.7 70.9 41.0 62.8 59.7 70.8 41.0 62.8 59.7 70.8 41.0 62.8 59.7 58.6

the real-world adaptation scenarios by making use of cor-
ruption and weather changes. While this imitation is rea-
sonable, it does not consider some real-world restrictions.
For example, in the real world, the data distribution is often
long-tailed and is changing continuously. Extending test-
time adaptation to more real-world scenarios in the wild can
be an interesting future work.
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