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1. Overview
More network architecture details, experimental results,

further analysis of proposed benchmarks, discussion and
potential future work are provided in this supplementary
material. Specifically, Section 2 provides network architec-
ture details of SSAN-M and SSAN-R. Section 3 provides
the results of the cross-type testing on CASIA-MFSD [24],
Replay-Attack [3], and MSU-MFSD [18]. Section 4 pro-
vides further descriptions and analyses of proposed bench-
marks. Section 5 provides further discussion about our
method. Section 6 describes the existing problems and fu-
ture work direction.

2. Network Architecture
The detailed structures of SSAN-M and SSAN-R are

shown in Fig. 1. For the structure, there exist differences in
the feature generator and classifier between them. For the
loss function, SSAN-M and SSAN-R have different forms
of Lcls according to their supervision approaches. Specif-
ically, depth supervision and LDepth are usually used in
DepthNet [11] based architectures SSAN-M, while binary
supervision and LBCE are used in ResNet-18 [5] based ar-
chitectures SSAN-R. Their formulas are shown as follow:

LBCE =
1

N

N∑
i=1

[yi · logxi + (1− yi) · log (1− xi)] ,

(1)
where N is the number of the samples and yi is the binary
label of sample xi.

LDepth =
1

N

N∑
i=1

∥DP (i)−DG (i)∥2 , (2)

where N is the number of the samples, DP (i) and DG(i)
represent the predicted depth map and ground-truth depth

* denotes the corresponding author.

map, respectively. Thus, mean squared errors are calculated
to measure the difference between them.

3. Cross-Type Testing
In the intra- and inter- dataset scenarios, different attack

types can be considered as unique data fields, thus the per-
formance of facing unknown attacks also reflects the cross-
domain capability of the algorithms. Following the proto-
col proposed in [1], we use CASIA-MFSD [24], Replay-
Attack [3], and MSU-MFSD [18] to perform intra-dataset
cross-type testing and inter-dataset cross-type testing. All
of them are small-scale datasets and contain a variety of
common attack methods, including photo and video attacks.

Intra-Dataset Cross-Type Testing. As shown in Table
1, we adopt the Leave-One-Out (LOO) strategy for differ-
ent attack types in the same dataset to evaluate the robust-
ness of encountering unknown attacks. Five state-of-the-art
methods are listed for comparison and our proposed meth-
ods achieve the best performance, which indicates the capa-
bility to process unknown presentation attacks.

Inter-Dataset Cross-Type Testing. The data distribu-
tion in the same dataset is similar. However, in reality,
unknown presentation attacks usually appear in different
domains. As shown in Table 1, we further estimate the
performance of our method with inter-dataset protocols in
[1]. Three methods are listed for comparison, including
SVM1+IMQ [1], CDCN [21], and CDCN++ [21]. In this
testing, our method retains the best performance compared
with other methods, which demonstrates that our method
has a great adaptation capability towards domain and un-
known attacks.

4. Large-Scale FAS Benchmarks
4.1. Implementation Details

Datasets. Twelve datasets are used in the large-
scale benchmark, including CASIA-SURF [22], WMCA
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Figure 1. The detailed architectures of SSAN-M and SSAN-R. Specifically, embedding layers of DepthNet [11] are as the feature generator
in SSAN-M while embedding layers of ResNet-18 [5] are as the feature generator in SSAN-R. Depth supervision is used in SSAN-M while
binary supervision is used in SSAN-R to optimize the models. Thus, their corresponding Lcls are LDepth and LBCE , respectively. The
red dashed line highlights their unique modules.

Table 1. AUC (%) of the intra-dataset cross-type and inter-dataset cross-type testing on CASIA-MFSD, Replay-Attack, and MSU-MFSD.

Method Protocol
CASIA-MFSD Replay-Attack MSU-MFSD

OverallVideo Cut photo Warpped Photo Video Digital Photo Printed Photo Printed Photo HR Video Mobile Video
DTN [12]

Intra

90.00 97.30 97.50 99.90 99.90 99.60 81.60 99.90 97.50 95.90±6.20
CDCN [21] 98.48 99.90 99.80 100.00 99.43 99.92 70.82 100.00 99.99 96.48±9.64

CDCN++ [21] 98.07 99.90 99.60 99.98 99.89 99.98 72.29 100.00 99.98 96.63±9.15
BCN [19] 99.62 100.00 100.00 99.99 99.74 99.91 71.64 100.00 99.99 96.77±9.99

NAS-FAS [20] 99.62 100.00 100.00 99.99 99.89 99.98 74.62 100.00 99.98 97.12±8.94
SSAN-M (Ours) 97.65 99.52 98.68 100.00 100.00 99.83 86.88 100.00 99.25 97.98±3.99
SVM1+IMQ [1]

Inter

88.41 75.14 75.23 88.21 71.20 56.41 56.62 71.12 49.75 70.23±12.69
CDCN [21] 72.20 79.31 84.22 97.73 94.89 96.70 74.25 98.88 100.00 87.69±10.56

CDCN++ [21] 73.12 76.64 78.36 96.66 92.92 97.67 74.25 98.13 100.00 87.53±10.90
SSAN-M (Ours) 73.20 75.27 82.69 97.48 89.26 96.04 79.69 99.75 98.75 88.01±9.93

[4], HKBU-MARs V2 [10], CeFA [9], MSU-MFSD [18],
OULU-NPU [2], CelebA-Spoof [23], CASIA-MFSD [24],
REPLAY-ATTACK [3], WFFD [6], SiW [11], and Rose-
Youtu [8]. For image data, we utilize all images of them.
For video data, we extract frames of them at specific in-
tervals to ensure similar data quantities. We firstly convert
different raw data into image format, then merge them into

a larger data distribution to simulate the realistic spectacles.
Thus, the numbers of live / spoof images during training are
738624 / 1388138, 316227 / 666380, and 422397 / 721758
in protocol 1, 2 1, and 2 2, respectively. Their detailed in-
formation is shown in Table 2.

Protocols. For different testing scenarios, we set up cor-
responding testing protocols, and detailed information is



Table 2. Details of the datasets we use in the large-scale benchmark.

Dataset Raw Format Attack Types Interval
Images Num

Train Test
CASIA-SURF [22] Image Print - 28876 56903

WMCA [4] Video Print, Replay, Mask 1 38293 664
HKBU-MARs V2 [10] Video Mask 1 254300 1328

CeFA [9] Video Print, Replay, Mask 1 387539 44112
MSU-MFSD [18] Video Print, Replay 1 33585 1280
OULU-NPU [2] Video Print, Replay 1 240014 14400

CelebA-Spoof [23] Image Print, Replay, Mask - 456509 64884
CASIA-MFSD [24] Video Print, Replay 1 45085 2880

REPLAY-ATTACK [3] Video Print, Replay 1 92951 3840
WFFD [6] Image Waxworks - 5280 1756
SiW [11] Video Print, Replay 3 274856 11920

Rose-Youtu [8] Video Print, Replay, Mask 3 269474 5560
Total Image - - 2126762 209527

shown in Table 3. Significantly, for protocol 2, we divide
these datasets into two piles according to their data quanti-
ties and attack types. Thus, protocols 2 1 and 2 2 are set to
evaluate the performance of our methods between multiple
datasets.

Metrics. In the real-world scenarios, there exist exten-
sive live faces but few spoof faces, thus the Recall is usually
used to evaluate the performance of the algorithms in real-
ity. On the other hand, the metrics TPR@FPR at specific
values have been widely used in face verification, such as
IJB-C [13]. Thus, in the large-scale FAS benchmarks, we
gather all live faces as negative cases while partial spoof
faces as positive cases to calculate their TPR@FPR on each
dataset. Then, the mean and variance of them are used for
an overall evaluation.

4.2. Experimental Analysis

In the manuscript, we compare our method with differ-
ent network structures (i.e., CNN [5] and Transformer [16])
and some recent state-of-the-art methods (i.e., CDCN [21]
and SSDG [7]). In terms of the quantitative results, our
method has achieved the best performance, compared with
other methods. To make a further analysis, we draw ROC
curves of each testing set on all protocols, as shown in Fig.
3, 4, and 5.

Fig. 3 describes the performance of different methods on
protocol 1. It can be observed that our method outperforms
the other methods in most datasets, which demonstrates the
effectiveness of our method in the intra-dataset testing sce-
nario. However, CDCN obtains the worst performance due
to the limitation of model capability (parameter quantity),
as shown in Table 5. It is worth noting that all models
achieve nearly 100% accuracy in WMCA, which indicates
there exist more universal cases in this dataset, thus great
fitting can be obtained by it.

Fig. 4 describes the performance of different methods
on protocol 2 1. It can be observed that our method shows
competitive performance in most datasets, which demon-
strates the effectiveness of our method in the cross-dataset
testing scenario. However, SSDG-R obtains the worst per-

formance in this setting, which can be attributed to the fol-
lowing reasons: 1) In large-scale data scenarios, attacks
images from different domains may share some common
distributions, thus the Asymmetric Triplet Mining proposed
in [7] may confuse the optimization of different attack data
from different domains; 2) There exist a broad distribution
for live faces in the real-world scenarios where have exten-
sive live faces but few spoof faces, as shown in Fig. 6, thus
the optimization on the complete representations of single-
side adversarial learning may be difficult in the real-world
scenarios.

Fig. 5 describes the performance of different methods
on protocol 2 2. It can be observed that our method shows
the best performance in most datasets, compared with the
other methods, which demonstrates the effectiveness of our
method in the cross-dataset testing scenario. However,
CDCN obtains the worst performance due to the limitation
of model capability (parameter quantity), as shown in Ta-
ble 5. Besides, CDCN is mainly designed for intra-dataset
testing without domain adaptation (DA) or domain gener-
alization (DG) techniques, thus may encounter degradation
when facing unseen data. On the other hand, it is worth not-
ing that our method obtains awful performance on HKBU,
which may be attributed to the following reasons: 1) There
exist limit mask attack images in the training set, thus poor
performance is almost obtained by each network structure;
2) There exist diverse materials for mask attacks, such as
hard resin, silicone, paper, plastic and so on. Different ma-
terials have unique texture information, which may cause
chaos in contrastive learning for stylized features. To over-
come the above problems, more mask attacks need to be
collected as the training set in future works.

4.3. Ablation Study

To further verify the superiority of our SSAN as well
as the contributions of each component, we form multiple
incomplete models by controlling different variables and
measure their performance on the large-scale FAS bench-
mark. Their results are shown in Table 4. It can be ob-
served that our final model can achieve the best perfor-



Table 3. Details of the protocol implementation in the large-scale benchmark.

Dataset
Protocol 1 (Live / Spoof) Protocol 2 1 (Live / Spoof) Protocol 2 2 (Live / Spoof)
Train Test Train Test Train Test

CASIA-SURF [22]

738624 / 1388138

58095 / 39745

/ 422397 / 721758

31190 / 39745
WMCA [4] 58095 / 104 31190 / 104

HKBU-MARs V2 [10] 58095 / 656 31190 / 656
CeFA [9] 58095 / 34512 31190 / 34512

MSU-MFSD [18] 58095 / 2160 31190 / 960
OULU-NPU [2] 58095 / 11520 31190 / 11520

CelebA-Spoof [23] 58095 / 45057

316227 / 666380

26905 / 45057

/

CASIA-MFSD [24] 58095 / 960 26905 / 2160
REPLAY-ATTACK [3] 58095 / 3200 26905 / 3200

WFFD [6] 58095 / 878 26905 / 878
SiW [11] 58095 / 8480 26905 / 8480

Rose-Youtu [8] 58095 / 4160 26905 / 4160

mance, which proves the effectiveness of each component.

Table 4. The ablation study on the large-scale FAS benchmarks.
Only the results (%) under TPR@FPR=10% on each protocol are
reported there.

Method
Protocols

1 2 1 2 2
SSAN-R w/o Ladv 97.67±6.73 61.20±23.49 62.80±25.22

SSAN-R w/o Lcontra 94.92±6.26 57.85±21.47 55.66±29.98
SSAN-R w/o stop-grad 98.19±4.81 63.27±17.32 56.67±28.95
SSAN-R w/ hard-sup 97.77±5.02 58.23±22.06 60.46±27.21

SSAN-R w/ SCL 97.45±4.60 57.67±21.74 55.76±31.07
SSAN-R (Ours) 98.31±4.19 63.61±21.69 64.54±28.36

4.4. Model Efficiency

In Table 5, we list the number of parameters and MACs
to compare the model size and computation efficiency be-
tween different methods. It can be observed that our method
not only has modest parameters (8.204M) and computation
(2.235GMac), but also obtains excellent performance on the
existing and proposed benchmarks, which proves the effi-
ciency of our method.

Table 5. The comparison of parameter quantity and computational
complexity.

Model Backbone Parameters MACs
ResNet18 [5] - 11.178M 2.375GMac
Deit-T [16] - 5.477M 1.075GMac
CDCN [21] - 2.245M 47.428GMac
SSDG-R [7] ResNet18 12.758M 2.904GMac

SSAN-R ResNet18 8.204M 2.235GMac

4.5. Visualization

Features Visualization. To future analyze the feature
space learned by our SSAN method, we visualize the fea-
ture distribution under each sub-datasets in the large-scale
benchmark protocol 1 using t-SNE [17], as shown in Fig. 6.
It is worth noting that there contain all live faces and par-
tial spoof faces in each sub-dataset testing, which is more
similar to the real-world scenarios. Thus, it can be observed
the following phenomenons: 1) The features of living faces
can access to a broader distribution, compared to that of

spoof faces, due to the imbalance that extensive live faces
but few spoof faces in the testing setting and realistic specta-
cles; 2) Our method can separate spoof images from the live
ones effectively, which proves the superiority of our method
among multiple datasets.

5. Discussion
The Assembled Features for Classification. The rea-

sons: 1) The proposed contrastive learning is implemented
on the assembled features, which is important for style fea-
tures extraction; 2) Content features contain important se-
mantic cues, such as facial landmarks, which are comple-
mentary to style characteristics. Fig. 5 (b) in the manuscript
shows that the distribution of style features is compact,
which indicates they are usually similar for intra-categories.
Nevertheless, when different style features are applied to
the corresponding content ones for the assembled repre-
sentations, it will further enhance their distribution differ-
ence between living and spoofing shown in Fig. 5 (c)
in the manuscript; 3) Ablation study on O&C&I to M is
also conducted to prove it quantitatively (Only style fea-
tures: 19.58% HTER and 90.38% AUC; Assembled fea-
tures: 10.42% HTER and 94.76% AUC).

Comparison with Triplet Mining. There exist the fol-
lowing differences between our SSAN and typical methods
of triplet mining: 1) Our method decouples the representa-
tion into content and style features by utilizing their unique
properties, then assembles various pairs of them to con-
duct contrastive learning for DG. This is a new perspective
to eliminate domain bias; 2) Our method is more suitable
for large-scale data scenarios. Because it is relatively dif-
ficult to conduct triplet mining on the complete represen-
tations directly when facing mass data. But for separated
features, their common properties can be better induced and
used with the increase of data; 3) Experimental results have
proven the superiority of our method compared with the
previous methods. For example, our method obtains great
improvements on protocol 2 1 of proposed benchmarks by
10.17%, 22.29%, and 6.52%, respectively, compared with
SSDG [7] which is a representative work of triplet mining.



Thus, our method is different from the previous methods.
Wrong Analysis. Fig. 2 shows that most errors are

caused by the challenging appearance, such as low- or high-
light conditions, color distortions, or image blurring. These
adverse effects may mask the difference between living and
spoofing.

Figure 2. Examples of incorrect results. Left: Live; Right: Spoof.

6. Future Work
Though the preliminary experimental results have been

obtained, there still exist some problems to be further stud-
ied, as follows:

Long-Tail Distribution. As shown in Table 2, there
contain unbalanced quantities between different datasets,
though specific sample intervals are used to alleviate this
problem. This imbalance may lead to different perfor-
mances in different datasets for intra-dataset testing shown
in Fig. 3 and for cross-dataset testing shown in Fig. 4 and
5. Specifically, the long-tail data may be trapped in infe-
rior performance under the large-scale benchmark because
of unbalanced optimization. Therefore, the long-tail prob-
lems in FAS need to be further studied and developed.

Domain Partition. In the manuscript, adversarial learn-
ing is used to make generated content features indistin-
guishable for different domains. These domains mean dif-
ferent datasets, which may be suitable for the testing scenar-
ios that contain several datasets such as OCIM [14, 15], but
may suffer degradation when more datasets are provided,
because there may exist overlap between different datasets.
Our method is aimed to fetch close the content features of
data in different domains, thus may suffer less impact from
the above problems. However, methods that utilize the do-
main information for triplet supervision may be subjected
to a serious degradation (i.e., SSDG-R shown in Fig. 3,
4, and 5). Therefore, the soft approaches of domain parti-
tion by clustering methods need to be further explored in
the testing scenarios containing multiple datasets.

Cross-Type Testing. In the large-scale benchmark,
intra- and cross- dataset protocols have been proposed to
evaluate the performance of the algorithms. However, the
robustness of encountering unknown attacks is also impor-
tant to be measured. Thus, the corresponding cross-type
protocols will be designed for our large-scale benchmark in
the future.

To sum up, the above problems constitute our future re-
search directions.



Figure 3. ROC curves of twelve testing sets for domain generalization on the large-scale FAS benchmark protocol 1.



Figure 4. ROC curves of six testing sets for domain generalization on the large-scale FAS benchmark protocol 2 1.

Figure 5. ROC curves of six testing sets for domain generalization on the large-scale FAS benchmark protocol 2 2.



(c) MSU MFSD(b) Replay Attack(a) CASIA MFSD

(f) Rose Youtu(e) SiW(d) OULU

(i) CASIA CeFA(h) HKBU(g) WMCA

(l) CelebA Spoof(k) CASIA SURF(j) WFFD

Figure 6. The t-SNE [17] visualizations of different features generated from SSAN-R under the large-scale benchmark protocol 1. In every
sub-testings, all live faces are as negative cases while partial spoof faces in current datasets are as positive cases, thus TPR@FPR at special
values are calculated as the quantitative measures for the algorithms. Different colors represent the samples from different datasets, as
shown in legends. Different shapes represent different liveness information: point=living, cross=spoofing.
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