Overview of the Appendix
The appendix is divided into the following sections,
* Sec. A: Describes the neural network setup and parameterization.
 Sec. B: Presents theoretical results and proof regarding the global convergence of gradient-based meta-learning.
 Sec. C: Derives the expression of MAML output.
 Sec. D: Derives the equivalence between MAML and kernel regressions.

¢ Sec. E: Presents more details of experiments in Sec. 6.

A. Neural Network Setup

In this paper, we consider a fully-connected feed-forward network with L hidden layers. Each hidden layer has width /;,
for i = 1, ..., L. The readout layer (i.e. output layer) has width [ L1 = k. At each layer i, for arbitrary input 2 € R?, we
denote the pre-activation and post-activation functions by h'(z), z!(x) € RY. The relations between layers in this network
are

iFl il il Wi =wi, ~N(0, 2=
{h z W +b and { v wﬂu ( \/E) (16)

S = () b= B~ N (0,00

where Wit e Rl and b1 € R+ are the weight and bias of the layer, w!,, and b!, are trainable variables drawn

i.i.d. from zero-mean Gaussian distributions at initialization (i.e., % and o are variances for weight and bias, and o is a
point-wise activation function.

B. Proof of Global Convergence for Gradient-Based Meta-Learning with Deep Neural Networks

In this section, we will prove the global convergence for gradient-based meta-learning with over-parameterized neural
nets. To prove the global convergence theorem, we introduce several key lemmas first, i.e., Lemma 1, 2, 3. Specifically, the
subsections of this section are formulated as follows.

* Sec. B.1: Present several helper lemmas with proof.

* Sec. B.2: Provides the proof of Lemma 1.

 Sec. B.3: Provides the proof of Lemma 2.

 Sec. B.4: Provides the proof of Lemma 3.

* Sec. B.5: Proves the global convergence theorem for MAML, i.e., Theorem 3 (restated version of Theorem 1).

Notice that in this section, we consider the standard parameterization scheme of neural networks shown in (16).

The global convergence theorem, Theorem 1, depends on several assumptions and lemmas. The assumptions are listed
below. After that, we present the lemmas and the global convergence theorem, with proofs in Appendix B.1,B.3,B.4 and B.5.
For Corollary 3.1, we append its proof to Appendix C.

Assumption 1 (Bounded Input Norm). VX € X, for any sample x € X, ||z||2 < 1. Similarly, VX' € X', for any sample
' e < 1. (This is equivalent to a input normalization operation, which is common in data preprocessing.)

Assumption 2 (Non-Degeneracy). The meta-training set (X,)) and the meta-test set (X', Y") are both contained in some
compact set. Also, X and X' are both non-degenerate, i.e. VX, X € X, X # X, and VX', X' € X', X' + X'.

Assumption 3 (Same Width for Hidden Layers). All hidden layers share the same width, 1, i.e., |1 =1l =--- =1 =l.

Assumption 4 (Full-Rank). The kernel ® defined in Lemma 3 is full-rank.



These assumptions are common, and one can find similar counterparts of them in the literature for supervised learning
[4,37]. In particular, notice that Assumption 3 is just for simplicity purpose without loss generality. In fact, one can directly
set | = min;¢(r l; as the minimum width across hidden layers, and all theoretical results in this paper still hold true [37].

As defined in the main text, 6 is used to represent the neural net parameters. For convenience, we define some short-hand
notations:

£ () = fo,( (17)

Fi(-) = Fo, (") (18)

F(0) = fo(X) = (fo(Xi)iL, (19)

F(6) = Fo(X, X', YV") = (Fo( Xy, X[, Y] )L, (20)

9(0) = Fp(x, X", Y) =Y 1)

J(0) = VoF(0) = VoFy(X, X', ) (22)

and

£(0) = (F(0.),) = 19003 @3)

P, = %Vth(X,X’,y')Vth(X,X’,y’) = %J(O)J(H)T 24)

where we use the ¢ loss function £(f, y) = 3||§ — y||3 in the definition of training loss £(6;) in (23), and the &, in (24) is

based on the definition'? of (-, *) in Sec. 4.1.

Below, Lemma 1 proves the Jacobian J is locally Lipschitz, Lemma 2 proves the training loss at initialization is bounded,
and Lemma 3 proves d converges in probability to a deterministic kernel matrix with bounded positive eigenvalues. Finally,
with these lemmas, we can prove the global convergence of MAML in Theorem 3.

Lemma 1 (Local Lipschitzness of Jacobian). For arbitraily small 6 > 0, then there exists K > 0 and I* > 0 such that:
VYV C > 0andl > l*, the following inequalities hold true with probability at least 1 — § over random initialization,

i 1 ZlI0) = JO)lF < K[ -0l
V0, 6 € B(6y,Cl™2), (25)
17Ol <K
where B is a neighborhood defined as
B8y, R) :={0: |0 — 0oll2 < R}. (26)
Proof. See Appendix B.1. O

Lemma 2 (Bounded Initial Loss). For arbitrarily small 5y > 0, there are constants Ry > 0 and I* > 0 such that as long
as the width 1 > I*, with probability at least (1 — dq) over random initialization,

l9(00)ll2 = | Fo, (X, X", V") = V|2 < Ro, (27)

which is also equivalent to
! 2 _ 1o
L(6o) = 5”9(90)“2 < 5.

Proof. See Appendix B.3. O

Lemma 3 (Kernel Convergence). Suppose the learning rates 1) and A suffiently small. As the network width | approaches
infinity, @9 = J(00)J(00) " converges in probability to a deterministic kernel matrix ® (i.e., ® = lim;_ o, ®g), which is
independent of 0y and can be analytically calculated. Furthermore, the eigenvalues of ® is bounded as, 0 < Op(P) <
Omax(P) < 00.

12There is a typo in the definition of ®4(-,*) in Sec. 4.1: a missing factor . The correct definition should be ®g (-, *) = %V@ Fo(:)VoFy(x)T.
Similarly, the definition of ® in Theorem 1 also missis this factor: the correct version is & = + 7 im0 J(60)J (60)T



Proof. See Appendix B.4. O
Note the update rule of gradient descent on 6; with learning rate 1 can be expressed as
Or41 = 0p — 0 (0:) T g(6;). (28)
The following theorem proves the global convergence of MAML under the update rule of gradient descent.
Theorem 3 (Global Convergence (Theorem 1 restated)). Denote 0y = Opin(P) and omax = Oax(P). For any 5o > 0 and

Ny < ﬁ, there exist Ry > 0, A € N, K > 1, and \g > 0, such that: for width l > A, running gradient descent with

learning rates ) = % and \ < ’\l—o over random initialization, the following inequalities hold true with probability at least

(1 = do):

t
3KRy, 1
> 06— 65all2 < — 2% (29)
]:1 nmin
. N K3 1
sup [ — il < 201 (30)
and
Omin t
9(6) = |[F(6) = V2 < (1= 222 ) Ry, (3D
which leads to
1 Omin 2t R2
L0 = SIF©0) - VI§ < (1-2Zm) 7 20, (32)
indicating the training loss converges to zero at a linear rate.
Proof. See Appendix B.5. O

In the results of Theorem 3 above, (29) considers the optimization trajectory of network parameters, and show the param-
eters move locally during training. (30) indicates the kernel matrix @, changes slowly. Finally, (32) demonstrates that the
training loss of MAML decays exponentially to zero as the training time evolves, indicating convergence to global optima at
a linear rate.

B.1. Helper Lemmas
Lemma 4. As the width | — oo, for any vector a € R™*! that ||a||p < C with some constant C > 0, we have
IVeOo(z, X') - allp — 0 (33)
where 0 is randomly intialized parameters.
Proof. Notice that
G]Rd ERmxd
. 1 S = .
Op(z, X') = TV fo("z ) Vool X' )T eRY (34)
GRlXD e]RD)Mn
with gradient as
A 1 1
VoOo(z, X') = = Vi fo(z) - Vo fo(X)T +- Vo folz)- Vi fo(X')T € RPM™*P (35)
I
€R1XDxD cRDxm cR1xD cRDXxmxD

where we apply a dot product in the first two dimensions of 3-tensors and matrices to obtain matrices.
Then, it is obvious that our goal is to bound the Frobenius Norm of

VOy(z, X') -a= Gvgfe(x) : Vefe(X/)T> ra+ (}Vefe(x) : nge(X/)T) -a (36)

Below, we prove that as the width { — oo, the first and second terms of (36) both have vanishing Frobenius norms, which
finally leads to the proof of (33).



e First Term of (36). Obviously, reshaping V3 fy(z) € R'*P*P as a RP*D matrix does not change the Frobenius norm

17V fo(2) - Vo fo(X')" || (in other words, || V3 fo(x) - Vofo(X')" |lp = Il Vifo(x) Vofo(X)" |lr).
———— ——— —— —— ——— — ——
eRDxm eRlxDxD ERDX"" eRDxD eRDxm

By combining the following three facts,

L. H% V3 fo(2) ||lop — 0 indicated by [27],

€RDXD

2. the matrix algebraic fact | HB||r < || H||op|| Bl

F»

3. the bound ||%ng9(‘)”p < constant from [37],

one can easily show that the first term of (35) has vanishing Frobenius norm, i.e.,
1o NT
17 Vafolz) - Vo fo(X) llr =0

Then, obviously,
1 1
I (§93600) Voo X)) -alle < 11 V360(0) - Vool lelalle 0

e Second Term of (36). From [27], we know that

| V35X T 8 flop =0
\ﬂeRDX'mXD s
Then, similar to the derivation of (37), we have
<constant 0
I (790ho@) - TEACEYT ) -alle < |- Vafolo)le - IV370(X) T ally 0

* Finally, combining (38) and (40), we obtain (33) by
. 1
V060(a. X)-alle < | (19A@) - Tafo(X)T) -alle

+ | (}Vefe(fﬂ) : nga(X/)T> -a|r

— 0

(37)

(38)

(39)

(40)

(41)

O

Lemma 5. Given any task T = (X,Y, X' Y") and randomly initialized parameters 0, as the width | — oo, for any x € X,

where © € R? and X € R™"*% we have
1V (Gole, X)O5H (I = e 97)) (fo(X') = Y")|r = 0,
and furthermore,

190 (0(, X107 (1 = e™%7)) (fo(X) = Y") [ = 0.

(42)

(43)



Proof of Lemma 5.
Overview. In this proof, we consider the expression

Vo (e, X)O5 1 (I = e297)) (fu(X') = Y") (44)

— Vo (Go(e, X >) 071 (I— e X7)(fo(X') = Y") (45)
+64(a, X') (Vo0 ) (1 = 97 (fo(X') = ") (46)
+O4(w, X)67 " (Voll = 797 (fo(X') = Y7), )

and we prove the terms of (45), (46) and (47) all have vanishing Frobenius norm. Thus, (44) also has vanishing Frobenius
norm in the ir}ﬁnite width limit, which is exactly the statementAof (42). This indicates that (43) also has a vanishing Frobenius
norm, since Oy (X, X') can be seen as a stack of n copies of Og(x, X’), where n is a finite constant.
Step I. Each factor of (44) has bounded Frobenius norm.
* ||©g(x, X")||p. It has been shown that H%ng(-)”p < constant in [37], thus we have ||Q(x, X')||r =
13Vef(@)Vof(X)TIIF < |7 Vef (@)llFll5; Ve (X)|F < constant.

* |6, || It has been shown that @y is positive definite with positive least eigenvalue [4,26], thus |6, || 7 < constant.

o |11 - e_’\éeTH r- [10] shows that largest eigenvalues of Oy are of O(L), and we know Oy is positive definite [4, 26],
thus it is obvious the eigenvalues of I — e~*©¢7 fall in the set {z | 0 < 2 < 1}. Therefore, certainly we have
|I — e 297 || < constant.

o || fo(X") = Y'||F. [37] shows that || fo(X') — Y'||2 < constant, which indicates that || fo(X') — Y'||r < constant.

In conclusion, we have shown

196 (2, X7, 105 I, 1T = ¢TI, 1 fo(X') = Y| < constant (48)

Step II.  Bound (45).
Without loss of generality, let us consider the neural net output dimension & = 1 in this proof, i.e., fy : R¢ — R. (Note:
with k£ > 1, the only difference is that V4 f(X’) € R™**P_ which has no impact on the proof). Then, we have

1 cRr? S
A AN m
Oo(z,X') = jvefe( z ) Vofo( X' )T e RV 49
GRIXD GRDXNL
with gradient as
N 1 1
VOy(z, X') = 7 V2fo(x)-Vofo(X)T +7 Vofo(x) -Vafe(X)T € RIxm*D (50)
eRlxDxD eRDxm eRlxD E]RDxme

where we apply a dot product in the first two dimensions of 3-tensors and matrices to obtain matrices.
Based on (48), we know that

E]Rnl x1

1051 (1 =) (fo(X") = Y")lr < 165 Il — e T p | fo(X') = Y'||r < constant .

Then, applying (33), we have

IV (80l X')) - 651 = o) (Ja(X') ~ ¥ 0 6D



Step III. Bound (46) and (47)

« Bound (46): Qp(z, X') (vgégl) (I — e 200T)(fo(X") — Y.

>
|

Clearly, Vg(:')g_ 1 = (:)0_ 1. (Vgé)g) - Oy !, where we apply a dot product in the first two dimensions of the
—— ~— ——
mxXmxXD ERMXm ERMXmXD Rpmxm

3-tensor and matrices.

Note that VgOp = V1IVZfo(X') - Vofo(X)T + V1IVafa(X') - V2fa(X')T. Obviously, by (39) and (48), we can
easily prove that

€0, X') (Vo07") (1= e7) (fo(X) = ¥")| = 0 (52)
« Bound (47): Oy (z, X')0, (ve( —A@M)) (fo(X') = Y")
Since V(I — e‘AéGT) = AT- g:fi} &9@ , we can easily obtain the following result by (39) and (48),
CRmXmxD ERMX™M  cpmxmxD
100w, X107 (Vall = e2%7) (fo(X') = ¥")]lr — 0 (53)

Step IV. Final result: prove (44) and (43).
Combining (51), (52) and (53), we can prove (44)

190 (Ona, X’)é—lu - e-A@m) (fo(X') = Y")lr (54)
< IVo (O, X)) 65 (1 = e ) (fo(X') = V)|
+ 165, X) ( Vi0; ) ) (fo(X) = Y1)
+1160(z, X105 (ValI = e7%7)) (fa(X) = V)£
=0 (35

Then, since O (X, X’) can be seen as a stack of n copies of Qg (, X'), where n is a finite constant, we can easily prove
(43) by

1V (86(X, X105 (1 = e97)) (fo(X") = Y)|Ir (56)
< > IV0 (Golai, X)O7 (1 = 97)) (fo(X) = Y')llk
—>Z§[n] (57)
where we denote X = (z;)™_,. O

B.2. Proof of Lemma 1

Proof of Lemma 1. Consider an arbitrary task 7 = (X, Y, X', Y”). Given sufficiently large width [, for any parameters in
the neighborhood of the initialization, i.e., § € B(6y, Cl -1/ 2), based on [37], we know the meta-output can be decomposed
into a terms of fy,

Fo(X, X', Y') = fo(X) — Og(X, X )0, (I — e ) (fo(X) - Y7), (58)

where ©(X, X') = 1V f5(X)Vg fo(X’)T, and ©5 = Og(X’, X') for convenience.



Then, we consider Vo Fyp(X, X', Y"), the gradient of Fp(X, X', Y”) in (58),

VoFs(X, X', Y') = Vo fa(X) — Og(X, X" )O; (I — e 2O T)Vy fo(X)
= Vo (06(X, X)05 1 (I = 97)) (f5(X") = V") (59)

By Lemma 5, we know the last term of (59) has a vanishing Frobenius norm as the width increases to infinity. Thus, for
any € > 0and 0 < § < 1, there exists [* > 0 s.t. for width [ > [*, with probability at least 1 — §, the last term of (59) is of
Ole), ie.,

VoFo(X, X', Y') = Vo fo(X) — Op(X, X)O,; (I — e 9T)Vy fo(X) + O(c) (60)

Since O(e) is of a negligible order, we do not carry it in the remaining proof steps for simplicity, and it does not affect the
correctness of the derivations (since the bounds of this Lemma are probabilistic).

Now, let us consider the SVD decomposition on %V‘g fo(X") € RF¥™XD where X’ € R¥*™ and § € RP. such that
%ngg (X") = UZVT, where U € Rkm>km '/ ¢ RD>*km are orthonormal matrices while ¥ € RF™**™ 5 3 diagonal
matrix. Note that we take km < D here since the width is sufficiently wide.

Then, since O = 1V, fo(X")Vofo(X")T = USVTVEUT = US2U", we have ©,' = US~2UT. Also, by Taylor
expansion, we have

AT B ) =N (I Syl <E>i> UT=U(I-e)UT. (61)

With these results of SVD, (60) becomes
VeF (X, X',Y"),0)
1 R .
= Vo fo(X) — *Vefo(X)Vefe(X/)TG)El([ — e TV fo(X)

(X) - ngg( YWVIVEUTYWUS2UNU (I - e UT|(VIUSVT)
= Vo fo(X) - Vefa( WE (I —e ™) sV
= Vofo(X) — Vaofo(X)V (I — e_)‘ET) 1’4
= Vo fo(X) — Vofo(X)(I — e MeT)
= Vo fo(X)e M7 (62)
where Hy = Hp(X', X') = %ngg(X’)TV(gf@(X’) € RPXP and the step (62) can be easily obtained by a Taylor
expansion similar to (61).

Note that Hy is a product of Vg fa(X’)" and its transpose, hence it is positive semi-definite, and so does e~*#7. By

eigen-decomposition on H, we can easily see that the eigenvalues of e *#7 are all in the range [0, 1) for arbitrary 7 > 0.
Therefore, it is easy to get that for arbitrary 7 > 0,

IVe (X, X", Y"),0)lr = IVefo(X)e 7||p < Vo fo(X)]r (63)

By Lemma 1 of [37], we know that there exists a Ky > 0 such that for any X and 6,

II\/er( r < Ko. (64)

Combining (63) and (64), we have

VeF((X X'Y'),0) Vefe( IF < Ko, (65)



which is equivalent to
1
—= 7O lr < Ko (66)
i

Now, let us study the other term of interest, ||.J(8) — J(0)||r = H\[VQF((X XY, 0)— —ZVQF((X, XY, 0)| s

where 0,0 € B(6y, C1=1/2).
To bound ||J(8) — J(0)||r, let us consider

IV6F((X, X, Y),0) = VoF (X, X".Y"), )]y (©7)
= Vo o(X)e™ 7 — Vg fg(X)e 07 lop
= 21 (Vofo(X) = Vafs(X) (707 + &= M07) (68)
+ (Vo fo(X) + Vi fa(X)) (e MoT — e o) ||,
< IV o(X) = Vafs(XO)llplle™ 7 4+ e, (69)

1 _
+ ’HVGfG(X) + véfé(X)Hon”e_/\HeT - e_)\HeTHOP
§Hv9f9( ) — véfé(X)”oz) (”e_AHeTHOP + ‘|6_>\Hé7||0p) (70)
+ (Vo So(X)llop + 1V5£5(X)lop) [le™ 0T — e 2o, (1)

It is obvious that [[e= 7|, ||e_/\H 7||p < 1. Also, by the relation between the operator norm and the Frobenius norm,
we have

Vo fo(X) = Vafag(X)llop < Vo fo(X) = Vg fg(X)lr (72)
Besides, Lemma 1 of [37] indicates that there exists a K1 > 0 such that for any X and 6, 0 e B(0o, 01’1/2),
1 _
v —Voofs(X < Ki||0 -6 73
H\[ 0.fo(X) — 7i 0fa(X)|lr < Kil 2 (73)
Therefore, (72) gives
Vo fo(X) = Vi fa(X)lop < K110 — 0] (74)
and then (70) is bounded as
1 — T — 5T n
§|\V9f9(X) - véfé(X)”oz) (||e Ao HOP + He AHa ||0p) < Kl\[lHe - 9”2' (75)
As for (71), notice that || - ||,p < || - || & and (64) give us
1
5 Ve fo(X)llop + 1Va fa(X)lop) < VIK,. (76)

Then, to bound ||e= 07 — e=*47||, in (71), let us bound the following first
IHo — Halle = I3 Vo lo(X) Vo o(X') ~ 1 Vafs(X')TVafs(X) ¢
- 1||1<vefe<X'>T T Vafa(X) ) (Vafo(X') = Vafs(X7)
L (Vofo(X)T = Vafg(X) ) (Vafo(X) + Vg fa(X)x
LIV 0 a(X7) + Vo fa (X190 fa(X7) = Vi fa(X) |

7 IV fo(XD)e +11Vafa(X ) r 1) IVofo(X) = Vo fa(X)llr
< 2KoK1||9—9H2 77

IN

\ /\
—



Then, with the results above and a perturbation bound'? on matrix exponentials from [29], we have

e o™ — e~ MHGT|| < || Hy — Hlop - (Amw-(uHeuoruHe—ngop))
HH0 - H@HOP
N ||H9||op - ||H9 - Hé“Op
< O(|Ho — Hgllop)

S 2K()K1K2||0 — 5”2 (78)
where we used the facts || Hpl|op = [|©0]lop > O(1) [10,71] and ||Hy — Hgllop < O(]|6 — ]|2) < O()-
Hence, by (76) and (78), we can bound (71) as
1 C\Hon N ~
5 Ve fo(X)llop + 1V fa(X)lop) [le Mo — M|, < 2VIKGK Kol|6 — 62 (79)

Finally, with (75) and (79), we can bound (67) as
IVoF((X, X', Y"),0) = VoF (X, X', Y"),0)lop < (K1 +2K3 K1 K2) V|0 — ]|
Finally, combining these bounds on (70) and (71), we know that

17(60) — J@)|r = II%WF((X, X' Y"),0) - %

\/\5?|V9F((X, X' Y"),0) = VoF (X, X",Y"),0)|lop

< Vkn(K; +2K2K 1 K5) |0 — 02 (80)

VGF((Xv X/vY/)v é)”F

<

Define K3 = \/%(Kl +2K2K;K>), we have
17(0) = J(0)]|» < K3]|0 — 0] (81)
Taking K = max{ Ky, K3} completes the proof. O
B.3. Proof of Lemma 2

Proof of Lemma 2. Tt is known that fp, (-) converges in distribution to a mean zero Gaussian with the covariance K deter-
mined by the parameter initialization [37]. As a result, for arbitrary ¢; € (0, 1) there exist constants [y > 0 and R; > 0, such
that: VI > [y, over random initialization, the following inequality holds true with probability at least (1 — d7),

([ foo (X) = Yll2, [| foo (X) = Y'[l2 < Ry (82)
We know that VT = (X,Y, X', Y’) € D,
Foo (X, XY") = fo,(X)
where 6} is the parameters after 7-step update on 6y over the meta-test task (X', Y"):

0, = 0/7 0o = 97
Oir1=0; — AV l(fo,(X"),Y') Vi=0,...,7 — 1, (83)
Suppose the learning rate A is sufficiently small, then similar to (58), we have
Fyo (X, X', Y") = fo,(X) 4+ O(X, X)O5 (I = e 97) (fy, (X') = V7). (84)

where O¢(-, %) = Vg, fa, () Va, fo,(x) | and we use a shorthand O = Oy (X', X').

13This bound is also derived in [61].



[26] proves that for sufficiently large width, Oy is positive definite and converges to O, the Neural Tangent Kernel, a
full-rank kernel matrix with bounded positive eigenvalues. Let 0yin(©) and omax(©) denote the least and largest eigen-
value of ©, respectively. Then, it is obvious that for a sufficiently over-parameterized neural network, the operator norm of
O(X, X")O (I — ¢=*©7) can be bounded based on o (©) and oay (©). Besides, [4,37] demonstrate that the neural net
output at initialization, fp,(-), is a zero-mean Gaussian with small-scale covaraince. Combining these results and (82), we
know there exists R(R1, N, Omin(©), omax (0)) such that

||F90 (X, XI? Y/) - YH2 < R(Rlv N, Umin(@)v Umax(@)) (85)

By taking an supremum over R(R1, N, Omin, 0max) for each training task in {7; = (X;,Y;, X[, Y/ ) }ie[n], We can get Ry
such that Vi € [N]

| Foy (X, XL, Y) ~ Yilla < Ry (86)

(s K2

and for Ry = /N Ry, define dy as some appropriate scaling of d;, then the following holds true with probability (1 — &)
over random initialization,

19(60)l2 = > IF(X, XY, 00) — yl3 < Ro 87
X,Y,X'Y'€D

O
B.4. Proof of Lemma 3

Proof of Lemma 3. The learning rate for meta-adaption, ), is sufficiently small, so the inner-loop optimization becomes
continuous-time gradient descent. Based on [37], for any task 7 = (X, Y, X', Y"’),
Fy(X, X', Y') = fo(X) + 60(X, X)T3 (X',7) (Y = fo(X")), (88)

where Oo (-, %) = Vo, fo(-) Ve, fo(x) T and T} (-,7) = Op(-,-) ~H(I — e A@0(7),
Then, we consider Vg, Fo(X, X', Y”), the gradient of Fp(X, X’,Y”) in (88). By Lemma 5, we know that for sufficiently
wide networks, the gradient of Fy(X, X', Y”) becomes

VQUFO(X> X/’ Y/) = vgofO(X) - éO(Xv X/)TSO(X/7 T)VeofO(X/) (39)
Since &9 = $o((X, A", V), (X, X, V) = Ve Fo(X, X, V) Ve, Fo(X, X, V)T and Fp(¥, X)) =
(Fo(X;, XL, Y)Y, € RN we know @ is a block matrix with N x N blocks of size kn x kn. For i,j € [N], the

(i, 7)-th block can be denoted as [®g];; such that

1
[Boliy = 7 Voo Fo(Xas X1, Y/ ) Vay Fo(X, X5, Y)T

= %Veofo(Xi)vaofO(Xj)T

+ 160(X0, XT, (X700, fo(XD) Vi, fo X)) T, (5, 7) T @p(X], X))
—%Veofo( i)V, fo(X )TTA (X}, 7)T60(X], X;)
~ 160(Xe, XI)T, (X7 V0, fo XD) Vi fo( ;)T

= O(Xi, X;)
+00(Xi, X)TY (X[, 7)00(X], XT3 (X}, 7) T O0(X], X;)
O0( X, X})TJ (X}, )T@o(X< X;)
0<Xz,x'>g< 7)00(X}, X;) (90)



where we used the equivalences O (-, %) = Og(, )T and 1V, fo(-) Vo, fo(*) = O (-, %).
By Algebraic Limit Theorem for Functional Limits, we have

Jim ol

= hm é‘)o(Xi,Xj)

+ lim O0(Xs, XNTp o (X1,7) Jim Oo( X/, X)TH o (Xj,m)T Jim O0(X}, X;)
— hm @Q(X“X )Tllmlﬁ»oo GU(X/ ) lli}n(;lo @0( 3 j)
— hm GO(X“X )Thm, O(XZ(,T)GO(XZ(,XJ')

(Xw X;)

O(X,, X)) Ta (X[, 7)O(X], X)) TS (X}, 7) " O(X], X;)
- O(X,, X))T(X},7)TO(X}, X;)

O(X;, X)T5 (X[, )O(X], X;) 1)
where O(-, %) = lim;_,o0 Og(-, %) is a deterministic kernel function, the Neural Tangent Kernel function (NTK) from the
literature on supervised learning [4,26,37]. Specifically, ©¢(+, *) converges to ©(+, x) in probability as the width [ approaches
infinity.

Hence, for any 4,j € [N], as the width [ approaches infinity, [®¢];; converges in probability to a deterministic matrix
limy_y o [‘i)O]ijs as shown by (91). Thus, the whole block matrix <i>0 converges in probability to a deterministic matrix in the
infinite wiflth limAit. Denote & = lim;_, o, P, then we know P is a deterministic matrix with each block expressed as (91).

Since &5 = @0(()(,2{’,3)’), (X, X)) = %V(;OFO(X,X’,y’)VGOFO(X,X’,y’)T, it is a symmetric square matrix.
Hence all eigenvalues of @ are greater or equal to 0, which also holds true for ®. In addition, because of Assumption 4, ® is
positive definite, indicating s () > 0. On the other hand, from [4], we know diagonal entries and eigenvalues of O+, *)
are positive real numbers upper bounded by O(L), as a direct result, it is easy to verify that the diagonal entries of the matrix
® are also upper bounded, indicating o (®) < co. Hence, we have 0 < aminA(<I>) < Omax (P) < 0.

Extension. It is easy to extend (91), the expression for ® = lim;_, . Po((X, X", Y’), (X, X’,)’), to more general

cases. Specifically, we can express P (-, x) analytically for arbitrary inputs. To achieve this, let us define a kernel function,
¢ (RF x RMXF) x (RXF x RMXF) oy RMEX1E guch that

¢((7 *)7 (.7 *)) = 9('7 .) + 9('7 *)Té(*a 7)6(*7*)TV(:)\(*> T)T@(*ﬂ .)
— O, )T (%, 7)O(x, ) — O(, )T (%, 7) TO (%, 0). (92)

Then, it is obvious that for 7, j € [N], the (4, j)-th block of ® can be expressed as [®];; = ¢((Xi, X}), (X, X7])).
For cases such as ®((X, X'), (X, X)) € RF"*knN Lit is also obvious that ®((X, X'), (X, X”)) is a block matrix that
consists of 1 x N blocks of size kn x kn, with the (1, j)-th block as follows for j € [N],

[(I)((X’ X/)v (XvX/))]Lj = ¢((X7 X/)v (XJ7X]/))

B.5. Proof of Theorem 3

Proof of Theorem 3. Based on these lemmas presented above, we can prove Theorem 3.
Lemma 2 indicates that there exist Ry and [* such that for any width [ > [*, the following holds true over random
initialization with probability at least (1 — d/10),

lg(6o)ll2 < Ro . (93)

Consider C = 3£ RO in Lemma 1.



First, we start with proving (29) and (32) by induction. Select I > [* such that (93) and (25) hold with probability at least
1— 50 over random initialization for every [ > I.Ast = 0, by (28) and (25), we can easily verify that (29) and (32) hold true

161 = b0l = Il =17 (60) " g(00)ll2 < 1l[T(00)lopllg(Bo)ll2 < %I (60) | 7]l g(B0)]2 < Ifﬂo Ry .
lg(0o)ll2 < Ry

Assume (29) and (32) hold true for any number of training step j such that 5 < . Then, by (25) and (32), we have

K77 700 min ¢
[60s1 = ill2 < 0l TG lopllo @)l < ~72 (1= 5 ) R

Beside, with the mean value theorem and (28), we have the following
19(Or+1)ll2 = lg(Or41 — g(0:) + g(04))]]2
= [|J(0;)(Ory1 — 02) + g(0%) |2
= (T =nJ(67)T(8:) T )g(6:)]2
<N =nJ (1) T(00) "Mlopllg(0e)|2
L Omin t
<= (81760 llop (1= 2552) Ry

where we define 0.’ as a linear interpolation between 60; and 6,1 such that 0} := 16, + (1 — )01 for some 0 < p < 1.
Now, we will show that with probability 50

Omin
1= (0)(6) T lop < 1 — 222,

Recall that &y — @ in probability, proved by Lemma 3. Then, there exists [ such that the following holds with probability at
least 1 — 60 for any width [ > I,

|1® — o < 1Tmin,

Our assumption 7y < makes sure that

Omax +Omin
||I - nO(EHOp S 1- 700 min -

Therefore, as [ > (“ifgﬂ)?, with probability at least 1 — %‘J the following holds,

1T =T (02)T(0:)  [lop
= |1 = 10® +1o® — o + 1 (J(80)J (B0) T — J(B1)T(0)T) [lop
< = 10®]lop + 10/|® — Dollop + Il (80) T (00) T — T(01)T(82) "[|op
To%min 1 o K2(|0: — o2 + 16/ — 6oll2)

3
100 min 67]0K3R0

3 Umin\/i

S 1- 100 min +

S 1-— 100 min +

<1_ 100 min

where we used the equality }.J(60).J (6) " = By
Hence, as we choose A = max{l*, [, [, %ﬂ)?}, the following holds for any width [ > A with probability at least 1 — &g

min

over random initialization

Omin ¢ Omin t+1
la(erlle < 17 =T (6F)7(0) T llop (1= 522 ) o < (1= B522) 7 Ro, ©4)



which finishes the proof (32).
Finally, we prove (30) by

[@o — &¢f| = %HJ(%)J(‘%)T — J(0)J(0:) " ||

IN

1 1
7IIJ(%)IIopHJ((v’o)T —J(6) " |lF+ jllJ(f)t) — J(00)lopll-T(0:) "I
< 2K2||60 — 6|2

6K3R,

Umin\/r

where we used (29) and Lemma 1. O]

<

C. Analytical Expression of MAML Output

In this section, we will present Corollary 3.1. Briefly speaking, with the help of Theorem 3, we first show the training dy-
namics of MAML with over-parameterized DNNs can be described by a differential equation, which is analytically solvable.
By solving this differential equation, we obtain the expression for MAML output on any training or test task.

Remarks. This corollary implies for a sufficiently over-parameterized neural network, the training of MAML is de-
termined by the parameter initialization, 6. Given access to 6y, we can compute the functions <i>o and Fjy, and then the
trained MAML output can be obtained by simple calculations, without the need for running gradient descent on 6. This nice
property enables us to perform a deeper analysis on MAML with DNNGs.

Corollary 3.1 (MAML Output (Corollary 3.1 Restated)). In the setting of Theorem I, the training dynamics of the MAML
can be described by a differential equation
dFt(XaX/ay/)
dt

where we denote F, = Fy, and & = ®g, (X, X', )", (X, X', )")) for convenience.
Solving this differential equation, we obtain the meta-output of MAML on training tasks at any training time as

= —n&o(F,(X, X, )V)~Y)

F(X, X Y) = (I — e "0ty 4 et Fy (X, X)), (95)
Similarly, on arbitrary test task T = (X, Y, X', Y"), the meta-output of MAML is
F (X, X" Y =F/(X, X", Y") + (i)o(X, X/, Y’)Tgo (t) (Y — Fo(X,Xx",)") (96)

where &y (-) = &g, (-, (X, X', V")) and Tgo (t) = &30—1 (I — 67’7&"”) are shorthand notations.
Proof. For the optimization of MAML, the gradient descent on 6, with learning rate 1 can be expressed as
Orr1 =01 —nVe,L(0)
= 00— V0, |y, (X, X', )~ VI3
=0, — Vo, Fo, (X, X V') T (Fy, (X, X", Y) =) O7)

Since the learning rate 7 is sufficiently small, the discrete-time gradient descent above can be re-written in the form of
continuous-time gradient descent (i.e., gradient flow),

@,

dt

Then, the training dynamics of the meta-output F;(-) = Fp, (-) can be described by the following differential equation,

dF, (X, X)) . db,
eI

= —ﬂVgtFt(X,X/,y/)VQtFt(X,X/,yl)—r (Ft(XaX/vy/) - y)
= —nd; (Fy(X, X, V) =) (98)

= _nVGtFet(X?X/’yI>T (Fet(X’X/7y/) _y)



where &, = &, (X, X, V'), (X, X", V') = Vo, F, (X, X',V Ve, Fr(X, X, V) 7.
On the other hand, Theorem 3 gives the following bound in (30),

6K3 Ry

min

sgpuéo —&r < I3, (99)

indicating o, stays almost constant during training for sufficiently over-parameterized neural networks (i.e., large enough
width 7). Therefore, similar to [37], we can replace ®; by @ in (98), and get

dF (X, X7,V

o = g (F(X, X", YV) =), (100)

which is an ordinary differential equation (ODE) for the meta-output F; (X, X', )’) w.r.t. the training time .
This ODE is analytically solvable with a unique solution. Solving it, we obtain the meta-output on training tasks at any
training time ¢ as,

F(X, X, Y) = (I — e %00y + e 10l Fy(x, X7, ))). (101)

The solution can be easily extended to any test task 7 = (X, Y, X', Y”), and the meta-output on the test task at any training
time is

Fy(X, X', Y') = Fo(X, X', Y') 4+ &o(X, X', Y)T] (8) (V= Fo(X, &', ))), (102)
0
where & (-) = &g, (-, (X, X’,)’)) and T (t) = Pt (I — e_”'iﬂt) are shorthand notations. O
0

D. Gradient-Based Meta-Learning as Kernel Regression

In this section, we first make an assumption on the scale of parameter initialization, then we restate Theorem 2. After that,
we provide the proof for Theorem 2.

[37] shows the output of a neural network randomly initialized following (16) is a zero-mean Gaussian with covariance
determined by o, and oy, the variances corresponding to the initialization of weights and biases. Hence, small values of o,
and o}, can make the outputs of randomly initialized neural networks approximately zero. We adopt the following assumption
from [4] to simplify the expression of the kernel regression in Theorem 2.

Assumption 5 (Small Scale of Parameter Initialization). The scale of parameter initialization is sufficiently small, i.e., 0., op
in (16) are small enough, so that fo(-) ~ 0.

Note the goal of this assumption is to make the output of the randomly initialized neural network negligible. The as-
sumption is quite common and mild, since, in general, the outputs of randomly initialized neural networks are of small scare
compared with the outputs of trained networks [37].

Theorem 4 (MAML as Kernel Regression (Theorem 2 Restated)). Suppose learning rates 1 and X are infinitesimal. As the
network width | approaches infinity, with high probability over random initialization of the neural net, the MAML output, (8),
converges to a special kernel regression,

F (X, X\ Y)=G5(X, X", YY)+ (X, X"), (X, X')TL(t) (Y — G (X, X', YV")) (103)

where G is a function defined below, © is the neural tangent kernel (NTK) function from [26] that can be analytically
calculated without constructing any neural net, and ® is a new kernel, which name as Meta Neural Kernel (MNK). The
expression for G is

GL(X, XY =0(X, X"TAH(X',r)Y". (104)

where T)(-,7) = O(-,-) (I — e~ 2007, Besides, G5 (X, X', V') = (G5 (Xi, X1, Y/)N ..

The MNK is defined as ® = ®((X,X'), (X, X)) € RFNXEnN sphich is a block matrix that consists of N x N blocks
of size kn x kn. Fori,j € [N|, the (i, j)-th block of ® is

[‘PL] = QS((XZ,X;), (X]7XJ/)) c Rknxkn7 (105)



where ¢ : (R"*F x R™>k) x (Rm*k 5 Rm*k) — RFX1E s q kernel function defined as

¢((a *)7 (‘7*)) = 6(7 .) + 6(7 *)Té(*v 7)6(*7*)TS(*7 T)T@(*v .)
— O, )T (%, 7)O(x, ) — O(-, )T (%, 7) TO (%, 0). (106)

Here ®((X, X"), (X, X")) € RF"*knN iy (12) is also a block matrix, which consists of 1 x N blocks of size kn x kn, with
the (1, j)-th block as follows for j € [N],

[@((X, X), (X, X)) = (X, X), (X5, X7)). (107)
Proof. First, (8) shows that the output of MAML on any test task 7 = (X, Y, X', Y”) can be expressed as
Fi(X,X')Y') = Fo(X, X', Y') + &o(X, X, YOT] (t) (Y = Fo(X, X7, ) (108)
Note (88) in Appendix B.4 shows that

Fo(X, X', Y") = fo(X) + ©o(X, XT3 (X',7) (Y = fo(X")), (109)

With Assumption 5, we can drop the terms fo(X ) and fo(X') in (109). Besides, from [4,26,37], we know lim;_, @0(~, *) =
O(+,x), the Neural Tangent Kernel (NTK) function, a determinisitc kernel function. Therefore, Fy(X, X', Y”) can be de-
scribed by the following function as the width appraoches infinity,

lim Fp(X, X7, Y") = G (X, X' Y') = O(X, XNTA(X', 7)Y, (110)
— 00

where T3 (-, 7) == O(-, )1 (I — e~ *OC:)7)_ Besides, G5 (X, X', V') = (G5 (X, X1, Y/ )N ,.
In addition, from Lemma 3, we know lim;_, o, ®¢(+,*x) = ®(-, x). Combined this with (110), we can express (108) in the
infinite width limit as

R(X, X"Y") = Go (X, X", Y") + (X, X'), (X, X)) Tg(t) (¥ - G (X, X", ))) (11D

where ®(-, ) is a kernel function that we name as Meta Neural Kernel function. The derivation of its expression shown in
(105)-(107) can be found in Appendix B.4. O]

ANIL Kernel The above theorem derives the analytical expression of the kernel induced by MAML. Certainly that variants
algorithms of MAML will induce kernels with (slightly) different expressions. A recent impactful variant of MAML is
Almost-No-Inner-Loop (ANIL) [50]. ANIL is a simplification of MAML that retains the performance of MAML while
enjoying a significant training speedup. The key idea of ANIL is to remove the inner-loop updates on the hidden layers; in
other words, ANIL only update the last linear layer in the inner loop, resulting in a much smaller computation and memory
cost compared with MAML. Following procedures in Appendix C and D, one can straightforwardly derive the expression of
the kernel induced by ANIL, which just replaces Eq. (106) (kernel function induced by MAML) by

B(( %), (0,%)) = O(,8) + K-, #)TR(+, 7)O (s, ) TR (%, 7) T K(x, @)
— K (-, $)TR (%, 7)O(x, 8) — O(-, %) TR (5, 7) TK(, ). (112)

where /C is the neural tangent kernel function corresponds to neural networks with frozen hidden layers (i.e., only the last
linear layer is optimized by gradient descent). The appearance of I directly results from the special inner-loop update rule
of ANIL (i.e., only updates the last linear layer in the inner loop).

E. More Details on Experiments
Training Data Augmentation Following previous few-shot learning works [38, 60], in the training stage, we adopt data

augmentation operations, including random cropping, color jittering, and random horizontal flip.

Training Batch Size For all 5-cells experiments, a batch size of 64 is used. For 8-cells experiments, we set the batch size
to 40 for minilmageNet and 56 for tieredImageNet to accommodate the GPU memory of a single GPU card.



Dropout Rate We use dropout rate of 0.2 and 0.1 for minilmageNet and tieredImageNet, respectively. Following DARTS
[42], we gradually increase the dropout rate during the training.

Normalization Layers To enable efficient computation of per-sample-gradients with Opacus [76] (it does not support
BatchNorm so far), we first convert all the BatchNorm [25] layers to GroupNorm [70] layers with 16 number of groups in
the search stage. After obtaining the cells, we train and evaluate the selected architectures with BatchNorm layers.

Hyper-parameters for Computing MetaNTK MAML kernels (defined in Definition 2)) and ANIL kernels (defined in
Eq. (112)) are used for 5-cells and 8-cells experiments, respectively. To write more concisely, We denote the product of
inner loop learning rate and training time as A7. An A7 = oo and a regularization coefficient of 0.001 are used for all 5-cells
experiments. For 8-cells experiments, an A7 = 1 and a kernel regularization coefficient of 10~° are used for minilmageNet
experiments while an A7 = oo and a kernel regularization coefficient of 0.001 are used for tieredImageNet experiments.

Hyper-parameters for Evaluation In the evaluation stage, we fine-tune the last layer of the learned neural net on the
labelled support samples of each test task, and then evaluate its prediction accuracy on the query samples. Following the
evaluation strategies of RFS [60], (/) we normalize the last hidden layer output of each sample to unit norm before passing
to the last layer during the evaluation; (ii) we enlarge the set of support samples by applying data augmentation (used in
the training stage) to create 5x augmented support samples for fine-tuning. We use cross-entropy loss and hinge loss for the
fine-tuning, both with ¢, regularization. For cross-entropy fine-tuning, we use the Logistic Regression (LR) solver provided
in scikit-learn [49]; for the hinge loss fine-tuning, we adopt the C-Support Vector Classification (SVC) with linear kernel
provided in scikit-learn [49]. Notice that these the /5 regularization in scikit-learn solvers is controlled by a regularization
parameter C' = Wlnahy On mini-ImageNet: (i) in the 5-cells case, we use SVC with C' = 0.2 for 1-shot and LR with
C = 0.6 for the 5-shot experiments; (ii) in the 8-cells case, we use SVC with C' = 0.35 for 1-shot and LR with C' = 0.4
for the 5-shot experiments. On tiered-ImageNet: (i) in the 5-cells case, we use SVC with C' = 0.75 for 1-shot and LR with
C = 0.8 for the 5-shot experiments; (if) in the 8-cells case, we use LR with C' = 0.95 for 1-shot and LR with C' = 0.5 for
the 5-shot experiments.
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