
Overview of the Appendix
The appendix is divided into the following sections,

• Sec. A: Describes the neural network setup and parameterization.

• Sec. B: Presents theoretical results and proof regarding the global convergence of gradient-based meta-learning.

• Sec. C: Derives the expression of MAML output.

• Sec. D: Derives the equivalence between MAML and kernel regressions.

• Sec. E: Presents more details of experiments in Sec. 6.

A. Neural Network Setup
In this paper, we consider a fully-connected feed-forward network with L hidden layers. Each hidden layer has width li,

for i = 1, ..., L. The readout layer (i.e. output layer) has width lL+1 = k. At each layer i, for arbitrary input x ∈ Rd, we
denote the pre-activation and post-activation functions by hi(x), zi(x) ∈ Rli . The relations between layers in this network
are {

hi+1 = ziW i+1 + bi+1

zi+1 = σ
(
hi+1

) and

{
W i
µ,ν = ωiµν ∼ N (0, σω√

li
)

biν = βiν ∼ N (0, σb)
, (16)

where W i+1 ∈ Rli×li+1 and bi+1 ∈ Rli+1 are the weight and bias of the layer, ωlµν and blν are trainable variables drawn

i.i.d. from zero-mean Gaussian distributions at initialization (i.e., σ
2
ω

li
and σ2

b are variances for weight and bias, and σ is a
point-wise activation function.

B. Proof of Global Convergence for Gradient-Based Meta-Learning with Deep Neural Networks
In this section, we will prove the global convergence for gradient-based meta-learning with over-parameterized neural

nets. To prove the global convergence theorem, we introduce several key lemmas first, i.e., Lemma 1, 2, 3. Specifically, the
subsections of this section are formulated as follows.

• Sec. B.1: Present several helper lemmas with proof.

• Sec. B.2: Provides the proof of Lemma 1.

• Sec. B.3: Provides the proof of Lemma 2.

• Sec. B.4: Provides the proof of Lemma 3.

• Sec. B.5: Proves the global convergence theorem for MAML, i.e., Theorem 3 (restated version of Theorem 1).

Notice that in this section, we consider the standard parameterization scheme of neural networks shown in (16).
The global convergence theorem, Theorem 1, depends on several assumptions and lemmas. The assumptions are listed

below. After that, we present the lemmas and the global convergence theorem, with proofs in Appendix B.1,B.3,B.4 and B.5.
For Corollary 3.1, we append its proof to Appendix C.

Assumption 1 (Bounded Input Norm). ∀X ∈ X , for any sample x ∈ X , ‖x‖2 ≤ 1. Similarly, ∀X ′ ∈ X ′, for any sample
x′ ∈ X ′, ‖x′‖2 ≤ 1. (This is equivalent to a input normalization operation, which is common in data preprocessing.)

Assumption 2 (Non-Degeneracy). The meta-training set (X ,Y) and the meta-test set (X ′,Y ′) are both contained in some
compact set. Also, X and X ′ are both non-degenerate, i.e. ∀X, X̃ ∈ X , X 6= X̃ , and ∀X ′, X̃ ′ ∈ X ′, X ′ 6= X̃ ′.

Assumption 3 (Same Width for Hidden Layers). All hidden layers share the same width, l, i.e., l1 = l2 = · · · = lL = l.

Assumption 4 (Full-Rank). The kernel Φ defined in Lemma 3 is full-rank.

These assumptions are common, and one can find similar counterparts of them in the literature for supervised learning
[4, 37]. In particular, notice that Assumption 3 is just for simplicity purpose without loss generality. In fact, one can directly
set l = mini∈[L] li as the minimum width across hidden layers, and all theoretical results in this paper still hold true [37].

As defined in the main text, θ is used to represent the neural net parameters. For convenience, we define some short-hand
notations:

ft(·) = fθt(·) (17)
Ft(·) = Fθt(·) (18)

f(θ) = fθ(X) = ((fθ(Xi))
N
i=1 (19)

F (θ) = Fθ(X ,X ′,Y ′) = ((Fθ(Xi, X
′
i, Y

′
i))Ni=1 (20)

g(θ) = Fθ(X ,X ′,Y ′)− Y (21)
J(θ) = ∇θF (θ) = ∇θFθ(X ,X ′,Y ′) (22)

and

L(θt) = `(F (θt),Y) =
1

2
‖g(θt)‖22 (23)

Φ̂t =
1

l
∇Fθt(X ,X ′,Y ′)∇Fθt(X ,X ′,Y ′) =

1

l
J(θ)J(θ)> (24)

where we use the `2 loss function `(ŷ, y) = 1
2‖ŷ − y‖

2
2 in the definition of training loss L(θt) in (23), and the Φ̂t in (24) is

based on the definition12 of Φ̂θ(·, ?) in Sec. 4.1.
Below, Lemma 1 proves the Jacobian J is locally Lipschitz, Lemma 2 proves the training loss at initialization is bounded,

and Lemma 3 proves Φ̂0 converges in probability to a deterministic kernel matrix with bounded positive eigenvalues. Finally,
with these lemmas, we can prove the global convergence of MAML in Theorem 3.

Lemma 1 (Local Lipschitzness of Jacobian). For arbitraily small δ > 0, then there exists K > 0 and l∗ > 0 such that:
∀ C > 0 and l > l∗, the following inequalities hold true with probability at least 1− δ over random initialization,

∀θ, θ̄ ∈ B(θ0, Cl
− 1

2),


1√
l
‖J(θ)− J(θ̄)‖F ≤ K‖θ − θ̄‖2

1√
l
‖J(θ)‖F ≤ K

(25)

where B is a neighborhood defined as

B(θ0, R) := {θ : ‖θ − θ0‖2 < R}. (26)

Proof. See Appendix B.1.

Lemma 2 (Bounded Initial Loss). For arbitrarily small δ0 > 0, there are constants R0 > 0 and l∗ > 0 such that as long
as the width l > l∗, with probability at least (1− δ0) over random initialization,

‖g(θ0)‖2 = ‖Fθ0(X ,X ′,Y ′)− Y‖2 ≤ R0, (27)

which is also equivalent to

L(θ0) =
1

2
‖g(θ0)‖22 ≤

1

2
R2

0.

Proof. See Appendix B.3.

Lemma 3 (Kernel Convergence). Suppose the learning rates η and λ suffiently small. As the network width l approaches
infinity, Φ̂0 = J(θ0)J(θ0)> converges in probability to a deterministic kernel matrix Φ (i.e., Φ = liml→∞ Φ̂0), which is
independent of θ0 and can be analytically calculated. Furthermore, the eigenvalues of Φ is bounded as, 0 < σmin(Φ) ≤
σmax(Φ) <∞.

12There is a typo in the definition of Φ̂θ(·, ?) in Sec. 4.1: a missing factor 1
l

. The correct definition should be Φ̂θ(·, ?) = 1
l
∇θFθ(·)∇θFθ(?)>.

Similarly, the definition of Φ in Theorem 1 also missis this factor: the correct version is Φ = 1
l

liml→∞ J(θ0)J(θ0)>

Proof. See Appendix B.4.

Note the update rule of gradient descent on θt with learning rate η can be expressed as

θt+1 = θt − ηJ(θt)
>g(θt). (28)

The following theorem proves the global convergence of MAML under the update rule of gradient descent.

Theorem 3 (Global Convergence (Theorem 1 restated)). Denote σmin = σmin(Φ) and σmax = σmax(Φ). For any δ0 > 0 and
η0 <

2
σmax+σmin

, there exist R0 > 0, Λ ∈ N, K > 1, and λ0 > 0, such that: for width l ≥ Λ, running gradient descent with
learning rates η = η0

l and λ < λ0

l over random initialization, the following inequalities hold true with probability at least
(1− δ0):

t∑
j=1

‖θj − θj−1‖2 ≤
3KR0

σmin
l−

1
2 (29)

sup
t
‖Φ̂0 − Φ̂t‖F ≤

6K3R0

σmin
l−

1
2 (30)

and

g(θt) = ‖F (θt)− Y‖2 ≤
(

1− η0σmin

3

)t
R0 , (31)

which leads to

L(θt) =
1

2
‖F (θt)− Y‖22 ≤

(
1− η0σmin

3

)2t R2
0

2
, (32)

indicating the training loss converges to zero at a linear rate.

Proof. See Appendix B.5.

In the results of Theorem 3 above, (29) considers the optimization trajectory of network parameters, and show the param-
eters move locally during training. (30) indicates the kernel matrix Φ̂t changes slowly. Finally, (32) demonstrates that the
training loss of MAML decays exponentially to zero as the training time evolves, indicating convergence to global optima at
a linear rate.

B.1. Helper Lemmas

Lemma 4. As the width l→∞, for any vector a ∈ Rm×1 that ‖a‖F ≤ C with some constant C > 0, we have

‖∇θΘ̂θ(x,X
′) · a‖F → 0 (33)

where θ is randomly intialized parameters.

Proof. Notice that

Θ̂θ(x,X
′) =

1

l
∇θfθ(

∈Rd︷︸︸︷
x)︸ ︷︷ ︸

∈R1×D

· ∇θfθ(
∈Rm×d︷︸︸︷
X ′)>︸ ︷︷ ︸

∈RD×m

∈ R1×m (34)

with gradient as

∇θΘ̂θ(x,X
′) =

1

l
∇2
θfθ(x)︸ ︷︷ ︸

∈R1×D×D

· ∇θfθ(X ′)>︸ ︷︷ ︸
∈RD×m

+
1

l
∇θfθ(x)︸ ︷︷ ︸
∈R1×D

· ∇2
θfθ(X

′)>︸ ︷︷ ︸
∈RD×m×D

∈ R1×m×D (35)

where we apply a dot product in the first two dimensions of 3-tensors and matrices to obtain matrices.
Then, it is obvious that our goal is to bound the Frobenius Norm of

∇θΘ̂θ(x,X
′) · a =

(
1

l
∇2
θfθ(x) · ∇θfθ(X ′)>

)
· a +

(
1

l
∇θfθ(x) · ∇2

θfθ(X
′)>
)
· a (36)

Below, we prove that as the width l→∞, the first and second terms of (36) both have vanishing Frobenius norms, which
finally leads to the proof of (33).

• First Term of (36). Obviously, reshaping ∇2
θfθ(x) ∈ R1×D×D as a RD×D matrix does not change the Frobenius norm

‖ 1
l∇

2
θfθ(x) · ∇θfθ(X ′)>︸ ︷︷ ︸

∈RD×m

‖F (in other words, ‖ 1
l ∇

2
θfθ(x)︸ ︷︷ ︸

∈R1×D×D

· ∇θfθ(X ′)>︸ ︷︷ ︸
∈RD×m

‖F = ‖ 1
l ∇

2
θfθ(x)︸ ︷︷ ︸
∈RD×D

· ∇θfθ(X ′)>︸ ︷︷ ︸
∈RD×m

‖F).

By combining the following three facts,

1. ‖ 1√
l
∇2
θfθ(x)︸ ︷︷ ︸
∈RD×D

‖op → 0 indicated by [27],

2. the matrix algebraic fact ‖HB‖F ≤ ‖H‖op‖B‖F ,

3. the bound ‖ 1√
l
∇θfθ(·)‖F < constant from [37],

one can easily show that the first term of (35) has vanishing Frobenius norm, i.e.,

‖1

l
∇2
θfθ(x) · ∇θfθ(X ′)>‖F → 0 (37)

Then, obviously,

‖
(

1

l
∇2
θfθ(x) · ∇θfθ(X ′)>

)
· a‖F ≤ ‖

1

l
∇2
θfθ(x) · ∇θfθ(X ′)>‖F ‖a‖F → 0 (38)

• Second Term of (36). From [27], we know that

‖ 1√
l
∇2
θfθ(X

′)>︸ ︷︷ ︸
∈RD×m×D

· a︸︷︷︸
∈Rm×1

‖op → 0 (39)

Then, similar to the derivation of (37), we have

‖
(

1

l
∇θfθ(x) · ∇2

θfθ(X
′)>
)
· a‖F ≤

≤constant︷ ︸︸ ︷
‖ 1√

l
∇θfθ(x)‖F ·

→0︷ ︸︸ ︷
‖∇2

θfθ(X
′)> · a‖op → 0 (40)

• Finally, combining (38) and (40), we obtain (33) by

‖∇θΘ̂θ(x,X
′) · a‖F ≤ ‖

(
1

l
∇2
θfθ(x) · ∇θfθ(X ′)>

)
· a‖F

+ ‖
(

1

l
∇θfθ(x) · ∇2

θfθ(X
′)>
)
· a‖F

→ 0 (41)

Lemma 5. Given any task T = (X,Y,X ′, Y ′) and randomly initialized parameters θ, as the width l →∞, for any x ∈ X ,
where x ∈ Rd and X ∈ Rn×d, we have

‖∇θ
(

Θ̂θ(x,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′)‖F → 0 , (42)

and furthermore,

‖∇θ
(

Θ̂θ(X,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′)‖F → 0 . (43)

Proof of Lemma 5.
Overview. In this proof, we consider the expression

∇θ
(

Θ̂θ(x,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′) (44)

= ∇θ
(

Θ̂θ(x,X
′)
)

Θ̂−1
θ (I − e−λΘ̂θτ)(fθ(X

′)− Y ′) (45)

+ Θ̂θ(x,X
′)
(
∇θΘ̂−1

θ

)
(I − e−λΘ̂θτ)(fθ(X

′)− Y ′) (46)

+ Θ̂θ(x,X
′)Θ̂−1

θ

(
∇θ(I − e−λΘ̂θτ)

)
(fθ(X

′)− Y ′), (47)

and we prove the terms of (45), (46) and (47) all have vanishing Frobenius norm. Thus, (44) also has vanishing Frobenius
norm in the infinite width limit, which is exactly the statement of (42). This indicates that (43) also has a vanishing Frobenius
norm, since Θ̂θ(X,X

′) can be seen as a stack of n copies of Θ̂θ(x,X
′), where n is a finite constant.

Step I. Each factor of (44) has bounded Frobenius norm.

• ‖Θ̂θ(x,X
′)‖F . It has been shown that ‖ 1√

l
∇θf(·)‖F ≤ constant in [37], thus we have ‖Θ̂θ(x,X

′)‖F =

‖ 1
l∇θf(x)∇θf(X ′)>‖F ≤ ‖ 1√

l
∇θf(x)‖F ‖ 1√

l
∇θf(X ′)‖F ≤ constant.

• ‖Θ̂−1
θ ‖F . It has been shown that Θ̂θ is positive definite with positive least eigenvalue [4,26], thus ‖Θ̂−1

θ ‖F ≤ constant.

• ‖I − e−λΘ̂θτ‖F . [10] shows that largest eigenvalues of Θ̂θ are of O(L), and we know Θ̂θ is positive definite [4, 26],
thus it is obvious the eigenvalues of I − e−λΘ̂θτ fall in the set {z | 0 < z < 1}. Therefore, certainly we have
‖I − e−λΘ̂θτ‖F ≤ constant.

• ‖fθ(X ′)− Y ′‖F . [37] shows that ‖fθ(X ′)− Y ′‖2 ≤ constant, which indicates that ‖fθ(X ′)− Y ′‖F ≤ constant.

In conclusion, we have shown

‖Θ̂θ(x,X
′)‖F , ‖Θ̂−1

θ ‖F , ‖I − e
−λΘ̂θτ‖F , ‖fθ(X ′)− Y ′‖F ≤ constant (48)

Step II. Bound (45).
Without loss of generality, let us consider the neural net output dimension k = 1 in this proof, i.e., fθ : Rd 7→ R. (Note:

with k > 1, the only difference is that∇θf(X ′) ∈ Rmk×D, which has no impact on the proof). Then, we have

Θ̂θ(x,X
′) =

1

l
∇θfθ(

∈Rd︷︸︸︷
x)︸ ︷︷ ︸

∈R1×D

· ∇θfθ(
∈Rm×d︷︸︸︷
X ′)>︸ ︷︷ ︸

∈RD×m

∈ R1×m (49)

with gradient as

∇θΘ̂θ(x,X
′) =

1

l
∇2
θfθ(x)︸ ︷︷ ︸

∈R1×D×D

· ∇θfθ(X ′)>︸ ︷︷ ︸
∈RD×m

+
1

l
∇θfθ(x)︸ ︷︷ ︸
∈R1×D

· ∇2
θfθ(X

′)>︸ ︷︷ ︸
∈RD×m×D

∈ R1×m×D (50)

where we apply a dot product in the first two dimensions of 3-tensors and matrices to obtain matrices.
Based on (48), we know that

‖

∈Rm×1︷ ︸︸ ︷
Θ̂−1
θ (I − e−λΘ̂θτ)(fθ(X

′)− Y ′) ‖F ≤ ‖Θ̂−1
θ ‖F ‖I − e

−λΘ̂θτ‖F ‖fθ(X ′)− Y ′‖F ≤ constant .

Then, applying (33), we have

‖∇θ
(

Θ̂θ(x,X
′)
)
· Θ̂−1

θ (I − e−λΘ̂θτ)(fθ(X
′)− Y ′)‖F → 0 (51)

Step III. Bound (46) and (47)

• Bound (46): Θ̂θ(x,X
′)
(
∇θΘ̂−1

θ

)
(I − e−λΘ̂θτ)(fθ(X

′)− Y ′).

Clearly, ∇θΘ̂−1
θ︸ ︷︷ ︸

m×m×D

= − Θ̂−1
θ︸︷︷︸

∈Rm×m

· (∇θΘ̂θ)︸ ︷︷ ︸
∈Rm×m×D

· Θ̂−1
θ︸︷︷︸

Rm×m

, where we apply a dot product in the first two dimensions of the

3-tensor and matrices.

Note that ∇θΘ̂θ =
√

1l∇2
θfθ(X

′) · ∇θfθ(X ′)> +
√

1l∇θfθ(X ′) · ∇2
θfθ(X

′)>. Obviously, by (39) and (48), we can
easily prove that

‖Θ̂θ(x,X
′)
(
∇θΘ̂−1

θ

)
(I − e−λΘ̂θτ)(fθ(X

′)− Y ′)‖F → 0 (52)

• Bound (47): Θ̂θ(x,X
′)Θ̂−1

θ

(
∇θ(I − e−λΘ̂θτ)

)
(fθ(X

′)− Y ′)

Since ∇θ(I − e−λΘ̂θτ)︸ ︷︷ ︸
∈Rm×m×D

= λτ · e−λΘ̂θτ︸ ︷︷ ︸
∈Rm×m

· ∇θΘ̂θ︸ ︷︷ ︸
∈Rm×m×D

, we can easily obtain the following result by (39) and (48),

‖Θ̂θ(x,X
′)Θ̂−1

θ

(
∇θ(I − e−λΘ̂θτ)

)
(fθ(X

′)− Y ′)‖F → 0 (53)

Step IV. Final result: prove (44) and (43).
Combining (51), (52) and (53), we can prove (44)

‖∇θ
(

Θ̂θ(x,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′)|F (54)

≤ ‖∇θ
(

Θ̂θ(x,X
′)
)

Θ̂−1
θ (I − e−λΘ̂θτ)(fθ(X

′)− Y ′)‖F

+ ‖Θ̂θ(x,X
′)
(
∇θΘ̂−1

θ

)
(I − e−λΘ̂θτ)(fθ(X

′)− Y ′)‖F

+ ‖Θ̂θ(x,X
′)Θ̂−1

θ

(
∇θ(I − e−λΘ̂θτ)

)
(fθ(X

′)− Y ′)‖F

→ 0 (55)

Then, since Θ̂θ(X,X
′) can be seen as a stack of n copies of Θ̂θ(x,X

′), where n is a finite constant, we can easily prove
(43) by

‖∇θ
(

Θ̂θ(X,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′)‖F (56)

≤
∑
i∈[n]

‖∇θ
(

Θ̂θ(xi, X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′)‖F

→ 0 (57)

where we denote X = (xi)
n
i=1.

B.2. Proof of Lemma 1

Proof of Lemma 1. Consider an arbitrary task T = (X,Y,X ′, Y ′). Given sufficiently large width l, for any parameters in
the neighborhood of the initialization, i.e., θ ∈ B(θ0, Cl

−1/2), based on [37], we know the meta-output can be decomposed
into a terms of fθ,

Fθ(X,X
′, Y ′) = fθ(X)− Θ̂θ(X,X

′)Θ̂−1
θ (I − e−λΘ̂θτ)(fθ(X

′)− Y ′), (58)

where Θ̂θ(X,X
′) = 1

l∇θfθ(X)∇θfθ(X ′)>, and Θ̂θ ≡ Θ̂θ(X
′, X ′) for convenience.

Then, we consider∇θFθ(X,X ′, Y ′), the gradient of Fθ(X,X ′, Y ′) in (58),

∇θFθ(X,X ′, Y ′) = ∇θfθ(X)− Θ̂θ(X,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)∇θfθ(X ′)

−∇θ
(

Θ̂θ(X,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)
)

(fθ(X
′)− Y ′) (59)

By Lemma 5, we know the last term of (59) has a vanishing Frobenius norm as the width increases to infinity. Thus, for
any ε > 0 and 0 < δ < 1, there exists l∗ > 0 s.t. for width l > l∗, with probability at least 1 − δ, the last term of (59) is of
O(ε), i.e.,

∇θFθ(X,X ′, Y ′) = ∇θfθ(X)− Θ̂θ(X,X
′)Θ̂−1

θ (I − e−λΘ̂θτ)∇θfθ(X ′) +O(ε) (60)

Since O(ε) is of a negligible order, we do not carry it in the remaining proof steps for simplicity, and it does not affect the
correctness of the derivations (since the bounds of this Lemma are probabilistic).

Now, let us consider the SVD decomposition on 1√
l
∇θfθ(X ′) ∈ Rkm×D, where X ′ ∈ Rk×m and θ ∈ RD. such that

1√
l
∇θfθ(X ′) = UΣV >, where U ∈ Rkm×km, V ∈ RD×km are orthonormal matrices while Σ ∈ Rkm×km is a diagonal

matrix. Note that we take km ≤ D here since the width is sufficiently wide.
Then, since Θ̂θ = 1

l∇θfθ(X
′)∇θfθ(X ′)> = UΣV >V ΣU> = UΣ2U>, we have Θ̂−1

θ = UΣ−2U>. Also, by Taylor
expansion, we have

I − e−λΘ̂θτ = I −
∞∑
i=0

(−λτ)i

i!
(Θ̂θ)

i = U

(
I −

∞∑
i=0

(−λτ)i

i!
(Σ)i

)
U> = U

(
I − e−λΣτ

)
U>. (61)

With these results of SVD, (60) becomes

∇θF ((X,X ′, Y ′), θ)

= ∇θfθ(X)− 1

l
∇θfθ(X)∇θfθ(X ′)>Θ̂−1

θ (I − e−λΘ̂θτ)∇θfθ(X ′)

= ∇θfθ(X)− 1

l
∇θfθ(X)(

√
lV ΣU>)(UΣ−2U>)[U

(
I − e−λΣτ

)
U>](

√
lUΣV >)

= ∇θfθ(X)−∇θfθ(X)V Σ−1
(
I − e−λΣτ

)
ΣV >

= ∇θfθ(X)−∇θfθ(X)V
(
I − e−λΣτ

)
V >

= ∇θfθ(X)−∇θfθ(X)(I − e−λHθτ)

= ∇θfθ(X)e−λHθτ (62)

where Hθ ≡ Hθ(X
′, X ′) = 1

l∇θfθ(X
′)>∇θfθ(X ′) ∈ RD×D, and the step (62) can be easily obtained by a Taylor

expansion similar to (61).
Note that Hθ is a product of ∇θfθ(X ′)> and its transpose, hence it is positive semi-definite, and so does e−λHτ . By

eigen-decomposition on H , we can easily see that the eigenvalues of e−λHτ are all in the range [0, 1) for arbitrary τ > 0.
Therefore, it is easy to get that for arbitrary τ > 0,

‖∇θF ((X,X ′, Y ′), θ)‖F = ‖∇θfθ(X)e−λHθτ‖F ≤ ‖∇θfθ(X)‖F (63)

By Lemma 1 of [37], we know that there exists a K0 > 0 such that for any X and θ,

‖ 1√
l
∇fθ(X)‖F ≤ K0. (64)

Combining (63) and (64), we have

‖ 1√
l
∇θF ((X,X ′, Y ′), θ)‖F ≤ ‖

1√
l
∇θfθ(X)‖F ≤ K0, (65)

which is equivalent to

1√
l
‖J(θ)‖F ≤ K0 (66)

Now, let us study the other term of interest, ‖J(θ) − J(θ̄)‖F = ‖ 1√
l
∇θF ((X,X ′, Y ′), θ) − 1√

l
∇θF ((X,X ′, Y ′), θ̄)‖F ,

where θ, θ̄ ∈ B(θ0, Cl
−1/2).

To bound ‖J(θ)− J(θ̄)‖F , let us consider

‖∇θF ((X,X ′, Y ′), θ)−∇θF ((X,X ′, Y ′), θ̄)‖op (67)

= ‖∇θfθ(X)e−λHθτ −∇θ̄fθ̄(X)e−λHθ̄τ‖op

=
1

2
‖ (∇θfθ(X)−∇θ̄fθ̄(X))

(
e−λHθτ + e−λHθ̄τ

)
(68)

+ (∇θfθ(X) +∇θ̄fθ̄(X))
(
e−λHθτ − e−λHθ̄τ

)
‖op

≤ 1

2
‖∇θfθ(X)−∇θ̄fθ̄(X)‖op‖e−λHθτ + e−λHθ̄τ‖op (69)

+
1

2
‖∇θfθ(X) +∇θ̄fθ̄(X)‖op‖e−λHθτ − e−λHθ̄τ‖op

≤ 1

2
‖∇θfθ(X)−∇θ̄fθ̄(X)‖op

(
‖e−λHθτ‖op + ‖e−λHθ̄τ‖op

)
(70)

+
1

2
(‖∇θfθ(X)‖op + ‖∇θ̄fθ̄(X)‖op) ‖e−λHθτ − e−λHθ̄τ‖op (71)

It is obvious that ‖e−λHθτ‖op, ‖e−λHθ̄τ‖op ≤ 1. Also, by the relation between the operator norm and the Frobenius norm,
we have

‖∇θfθ(X)−∇θ̄fθ̄(X)‖op ≤ ‖∇θfθ(X)−∇θ̄fθ̄(X)‖F (72)

Besides, Lemma 1 of [37] indicates that there exists a K1 > 0 such that for any X and θ, θ̄ ∈ B(θ0, Cl
−1/2),

‖ 1√
l
∇θfθ(X)− 1√

l
∇θfθ̄(X)‖F ≤ K1‖θ − θ̄‖2 (73)

Therefore, (72) gives

‖∇θfθ(X)−∇θ̄fθ̄(X)‖op ≤ K1

√
l‖θ − θ̄‖2 (74)

and then (70) is bounded as

1

2
‖∇θfθ(X)−∇θ̄fθ̄(X)‖op

(
‖e−λHθτ‖op + ‖e−λHθ̄τ‖op

)
≤ K1

√
l‖θ − θ̄‖2. (75)

As for (71), notice that ‖ · ‖op ≤ ‖ · ‖F and (64) give us

1

2
(‖∇θfθ(X)‖op + ‖∇θ̄fθ̄(X)‖op) ≤

√
lK0. (76)

Then, to bound ‖e−λHθτ − e−λHθ̄τ‖op in (71), let us bound the following first

‖Hθ −Hθ̄‖F = ‖1

l
∇θfθ(X ′)>∇θfθ(X ′)−

1

l
∇θ̄fθ̄(X ′)>∇θ̄fθ̄(X ′)‖F

=
1

l
‖1

2
(∇θfθ(X ′)> +∇θ̄fθ̄(X ′)>)(∇θfθ(X ′)−∇θ̄fθ̄(X ′))

+
1

2
(∇θfθ(X ′)> −∇θ̄fθ̄(X ′)>)(∇θfθ(X ′) +∇θ̄fθ̄(X ′))‖F

≤ 1

l
‖∇θfθ(X ′) +∇θ̄fθ̄(X ′)‖F ‖∇θfθ(X ′)−∇θ̄fθ̄(X ′)‖F

≤ 1

l
(‖∇θfθ(X ′)‖F + ‖∇θ̄fθ̄(X ′)F ‖) ‖∇θfθ(X ′)−∇θ̄fθ̄(X ′)‖F

≤ 2K0K1‖θ − θ̄‖2 (77)

Then, with the results above and a perturbation bound13 on matrix exponentials from [29], we have

‖e−λHθτ − e−λHθ̄τ‖op ≤ ‖Hθ −Hθ̄‖op ·
(
λτe−λτ ·(‖Hθ‖op−‖Hθ−Hθ̄‖op)

)
≤ ‖Hθ −Hθ̄‖op
‖Hθ‖op − ‖Hθ −Hθ̄‖op

≤ O(‖Hθ −Hθ̄‖op)
≤ 2K0K1K2‖θ − θ̄‖2 (78)

where we used the facts ‖Hθ‖op = ‖Θ̂θ‖op ≥ O(1) [10, 71] and ‖Hθ −Hθ̄‖op ≤ O(‖θ − θ̄‖2) ≤ O(1√
l
).

Hence, by (76) and (78), we can bound (71) as

1

2
(‖∇θfθ(X)‖op + ‖∇θ̄fθ̄(X)‖op) ‖e−λHθτ − e−λHθ̄τ‖op ≤ 2

√
lK2

0K1K2‖θ − θ̄‖2 (79)

Finally, with (75) and (79), we can bound (67) as

‖∇θF ((X,X ′, Y ′), θ)−∇θF ((X,X ′, Y ′), θ̄)‖op ≤ (K1 + 2K2
0K1K2)

√
l‖θ − θ̄‖2

Finally, combining these bounds on (70) and (71), we know that

‖J(θ)− J(θ̄)‖F = ‖ 1√
l
∇θF ((X,X ′, Y ′), θ)− 1√

l
∇θF ((X,X ′, Y ′), θ̄)‖F

≤
√
kn√
l
‖∇θF ((X,X ′, Y ′), θ)−∇θF ((X,X ′, Y ′), θ̄)‖op

≤
√
kn(K1 + 2K2

0K1K2)‖θ − θ̄‖2 (80)

Define K3 =
√
kn(K1 + 2K2

0K1K2), we have

‖J(θ)− J(θ̄)‖F ≤ K3‖θ − θ̄‖2 (81)

Taking K = max{K0,K3} completes the proof.

B.3. Proof of Lemma 2

Proof of Lemma 2. It is known that fθ0(·) converges in distribution to a mean zero Gaussian with the covariance K deter-
mined by the parameter initialization [37]. As a result, for arbitrary δ1 ∈ (0, 1) there exist constants l1 > 0 and R1 > 0, such
that: ∀ l ≥ l1, over random initialization, the following inequality holds true with probability at least (1− δ1),

‖fθ0(X)− Y ‖2, ‖fθ0(X ′)− Y ′‖2 ≤ R1 (82)

We know that ∀T = (X,Y,X ′, Y ′) ∈ D,

Fθ0(X,X ′, Y ′) = fθ′0(X)

where θ′0 is the parameters after τ -step update on θ0 over the meta-test task (X ′, Y ′):

θτ = θ′, θ0 = θ,

θi+1 = θi − λ∇θi`(fθi(X ′), Y ′) ∀i = 0, ..., τ − 1, (83)

Suppose the learning rate λ is sufficiently small, then similar to (58), we have

Fθ0(X,X ′, Y ′) = fθ0(X) + Θ̂0(X,X ′)Θ̂−1
0 (I − e−λΘ̂0τ)(fθ0(X ′)− Y ′). (84)

where Θ̂0(·, ?) = ∇θ0fθ0(·)∇θ0fθ0(?)> and we use a shorthand Θ̂0 ≡ Θ̂0(X ′, X ′).

13This bound is also derived in [61].

[26] proves that for sufficiently large width, Θ̂0 is positive definite and converges to Θ, the Neural Tangent Kernel, a
full-rank kernel matrix with bounded positive eigenvalues. Let σmin(Θ) and σmax(Θ) denote the least and largest eigen-
value of Θ, respectively. Then, it is obvious that for a sufficiently over-parameterized neural network, the operator norm of
Θ̂(X,X ′)Θ̂−1(I − e−λΘ̂τ) can be bounded based on σmin(Θ) and σmax(Θ). Besides, [4, 37] demonstrate that the neural net
output at initialization, fθ0(·), is a zero-mean Gaussian with small-scale covaraince. Combining these results and (82), we
know there exists R(R1, N, σmin(Θ), σmax(Θ)) such that

‖Fθ0(X,X ′, Y ′)− Y ‖2 ≤ R(R1, N, σmin(Θ), σmax(Θ)) (85)

By taking an supremum over R(R1, N, σmin, σmax) for each training task in {Ti = (Xi, Yi, X
′
i, Y

′
i)}i∈[N], we can get R2

such that ∀i ∈ [N]

‖Fθ0(Xi, X
′
i, Y

′
i)− Yi‖2 ≤ R2 (86)

and for R0 =
√
NR2, define δ0 as some appropriate scaling of δ1, then the following holds true with probability (1 − δ0)

over random initialization,

‖g(θ0)‖2 =

√ ∑
X,Y,X′,Y ′∈D

‖F ((X,X ′, Y ′), θ0)− y‖22 ≤ R0 (87)

B.4. Proof of Lemma 3

Proof of Lemma 3. The learning rate for meta-adaption, λ, is sufficiently small, so the inner-loop optimization becomes
continuous-time gradient descent. Based on [37], for any task T = (X,Y,X ′, Y ′),

F0(X,X ′, Y ′) = f0(X) + Θ̂0(X,X ′)T̃λ
Θ̂0

(X ′, τ) (Y ′ − f0(X ′)) , (88)

where Θ̂0(·, ?) = 1
l∇θ0f0(·)∇θ0f0(?)>, and T̃λ

Θ̂0
(·, τ) := Θ̂0(·, ·)−1(I − e−λΘ̂0(·,·)τ).

Then, we consider ∇θ0F0(X,X ′, Y ′), the gradient of F0(X,X ′, Y ′) in (88). By Lemma 5, we know that for sufficiently
wide networks, the gradient of F0(X,X ′, Y ′) becomes

∇θ0F0(X,X ′, Y ′) = ∇θ0f0(X)− Θ̂0(X,X ′)Tλ
Θ̂0

(X ′, τ)∇θ0f0(X ′) (89)

Since Φ̂0 ≡ Φ̂0((X ,X ′,Y ′), (X ,X ′,Y ′)) = 1
l∇θ0F0(X ,X ′,Y ′)∇θ0F0(X ,X ′,Y ′)> and F0(X ,X ′,Y ′) =

(F0(Xi, X
′
i, Y

′
i))Ni=1 ∈ RknN , we know Φ̂0 is a block matrix with N × N blocks of size kn × kn. For i, j ∈ [N], the

(i, j)-th block can be denoted as [Φ̂0]ij such that

[Φ̂0]ij =
1

l
∇θ0F0(Xi, X

′
i, Y

′
i)∇θ0F0(Xj , X

′
j , Y

′
j)>

=
1

l
∇θ0f0(Xi)∇θ0f0(Xj)

>

+
1

l
Θ̂0(Xi, X

′
i)T̃

λ
Θ̂0

(X ′i, τ)∇θ0f0(X ′i)∇θ0f0(X ′j)
>T̃λ

Θ̂0
(X ′j , τ)>Θ̂0(X ′j , Xj)

− 1

l
∇θ0f0(Xi)∇θ0f0(X ′j)

>T̃λ
Θ̂0

(X ′j , τ)>Θ̂0(X ′j , Xj)

− 1

l
Θ̂0(Xi, X

′
i)T̃

λ
Θ̂0

(X ′i, τ)∇θ0f0(X ′i)∇θ0f0(Xj)
>

= Θ̂0(Xi, Xj)

+ Θ̂0(Xi, X
′
i)T̃

λ
Θ̂0

(X ′i, τ)Θ̂0(X ′i, X
′
j)T̃

λ
Θ̂0

(X ′j , τ)>Θ̂0(X ′j , Xj)

− Θ̂0(Xi, X
′
j)T̃

λ
Θ̂0

(X ′j , τ)>Θ̂0(X ′j , Xj)

− Θ̂0(Xi, X
′
i)T̃

λ
Θ̂0

(X ′i, τ)Θ̂0(X ′i, Xj) (90)

where we used the equivalences Θ̂0(·, ?) = Θ̂0(?, ·)> and 1
l∇θ0f0(·)∇θ0f0(?) = Θ̂0(·, ?).

By Algebraic Limit Theorem for Functional Limits, we have

lim
l→∞

[Φ̂0]ij

= lim
l→∞

Θ̂0(Xi, Xj)

+ lim
l→∞

Θ̂0(Xi, X
′
i)T

λ
liml→∞ Θ̂0

(X ′i, τ) lim
l→∞

Θ̂0(X ′i, X
′
j)T

λ
liml→∞ Θ̂0

(X ′j , τ)> lim
l→∞

Θ̂0(X ′j , Xj)

− lim
l→∞

Θ̂0(Xi, X
′
j)T

λ
liml→∞ Θ̂0

(X ′j , τ)> lim
l→∞

Θ̂0(X ′j , Xj)

− lim
l→∞

Θ̂0(Xi, X
′
i)T

λ
liml→∞ Θ̂0

(X ′i, τ)Θ̂0(X ′i, Xj)

= Θ(Xi, Xj)

+ Θ(Xi, X
′
i)T̃

λ
Θ(X ′i, τ)Θ(X ′i, X

′
j)T̃

λ
Θ(X ′j , τ)>Θ(X ′j , Xj)

−Θ(Xi, X
′
j)T̃

λ
Θ(X ′j , τ)>Θ(X ′j , Xj)

−Θ(Xi, X
′
i)T̃

λ
Θ(X ′i, τ)Θ(X ′i, Xj) (91)

where Θ(·, ?) = liml→∞ Θ̂0(·, ?) is a deterministic kernel function, the Neural Tangent Kernel function (NTK) from the
literature on supervised learning [4,26,37]. Specifically, Θ̂0(·, ?) converges to Θ(·, ?) in probability as the width l approaches
infinity.

Hence, for any i, j ∈ [N], as the width l approaches infinity, [Φ̂0]ij converges in probability to a deterministic matrix
liml→∞[Φ̂0]ij , as shown by (91). Thus, the whole block matrix Φ̂0 converges in probability to a deterministic matrix in the
infinite width limit. Denote Φ = liml→∞ Φ̂0, then we know Φ is a deterministic matrix with each block expressed as (91).

Since Φ̂0 ≡ Φ̂0((X ,X ′,Y ′), (X ,X ′,Y ′)) = 1
l∇θ0F0(X ,X ′,Y ′)∇θ0F0(X ,X ′,Y ′)>, it is a symmetric square matrix.

Hence all eigenvalues of Φ̂0 are greater or equal to 0, which also holds true for Φ. In addition, because of Assumption 4, Φ is
positive definite, indicating σmin(Φ) > 0. On the other hand, from [4], we know diagonal entries and eigenvalues of Θ(·, ?)
are positive real numbers upper bounded byO(L), as a direct result, it is easy to verify that the diagonal entries of the matrix
Φ are also upper bounded, indicating σmax(Φ) <∞. Hence, we have 0 < σmin(Φ) < σmax(Φ) <∞.

Extension. It is easy to extend (91), the expression for Φ ≡ liml→∞ Φ̂0((X ,X ′,Y ′), (X ,X ′,Y ′), to more general
cases. Specifically, we can express Φ(·, ?) analytically for arbitrary inputs. To achieve this, let us define a kernel function,
φ : (Rn×k × Rm×k)× (Rn×k × Rm×k) 7→ Rnk×nk such that

φ((·, ∗), (•, ?)) = Θ(·, •) + Θ(·, ∗)T̃λΘ(∗, τ)Θ(∗, ?)T̃λΘ(?, τ)>Θ(?, •)

−Θ(·, ∗)T̃λΘ(∗, τ)Θ(∗, •)−Θ(·, ?)T̃λΘ(?, τ)>Θ(?, •). (92)

Then, it is obvious that for i, j ∈ [N], the (i, j)-th block of Φ can be expressed as [Φ]ij = φ((Xi, X
′
i), (Xj , X

′
j)).

For cases such as Φ((X,X ′), (X ,X ′)) ∈ Rkn×knN , it is also obvious that Φ((X,X ′), (X ,X ′)) is a block matrix that
consists of 1×N blocks of size kn× kn, with the (1, j)-th block as follows for j ∈ [N],

[Φ((X,X ′), (X ,X ′))]1,j = φ((X,X ′), (Xj , X
′
j)).

B.5. Proof of Theorem 3

Proof of Theorem 3. Based on these lemmas presented above, we can prove Theorem 3.
Lemma 2 indicates that there exist R0 and l∗ such that for any width l ≥ l∗, the following holds true over random

initialization with probability at least (1− δ0/10),

‖g(θ0)‖2 ≤ R0 . (93)

Consider C = 3KR0

σ in Lemma 1.

First, we start with proving (29) and (32) by induction. Select l̃ > l∗ such that (93) and (25) hold with probability at least
1− δ0

5 over random initialization for every l ≥ l̃. As t = 0, by (28) and (25), we can easily verify that (29) and (32) hold true{
‖θ1 − θ0‖2 = ‖ − ηJ(θ0)>g(θ0)‖2 ≤ η‖J(θ0)‖op‖g(θ0)‖2 ≤ η0

l ‖J(θ0)‖F ‖g(θ0)‖2 ≤ Kη0√
l
R0 .

‖g(θ0)‖2 ≤ R0

Assume (29) and (32) hold true for any number of training step j such that j < t. Then, by (25) and (32), we have

‖θt+1 − θt‖2 ≤ η‖J(θt)‖op‖g(θt)‖2 ≤
Kη0√
l

(
1− η0σmin

3

)t
R0 .

Beside, with the mean value theorem and (28), we have the following

‖g(θt+1)‖2 = ‖g(θt+1 − g(θt) + g(θt))‖2
= ‖J(θµt)(θt+1 − θt) + g(θt)‖2
= ‖(I − ηJ(θµt)J(θt)

>)g(θt)‖2
≤ ‖I − ηJ(θµt)J(θt)

>‖op‖g(θt)‖2

≤ ‖I − ηJ(θµt)J(θt)
>‖op

(
1− η0σmin

3

)t
R0

where we define θµt as a linear interpolation between θt and θt+1 such that θµt := µθt + (1− µ)θt+1 for some 0 < µ < 1.
Now, we will show that with probability 1− δ0

2 ,

‖I − ηJ(θµt)J(θt)
>‖op ≤ 1− η0σmin

3
.

Recall that Φ̂0 → Φ in probability, proved by Lemma 3. Then, there exists l̂ such that the following holds with probability at
least 1− δ0

5 for any width l > l̂,

‖Φ− Φ̂0‖F ≤
η0σmin

3
.

Our assumption η0 <
2

σmax+σmin
makes sure that

‖I − η0Φ‖op ≤ 1− η0σmin .

Therefore, as l ≥ (18K3R0

σ2
min

)2, with probability at least 1− δ0
2 the following holds,

‖I − ηJ(θµt)J(θt)
>‖op

= ‖I − η0Φ + η0Φ− Φ̂0 + η
(
J(θ0)J(θ0)> − J(θµt)J(θt)

>) ‖op
≤ ‖I − η0Φ‖op + η0‖Φ− Φ̂0‖op + η‖J(θ0)J(θ0)> − J(θµt)J(θt)

>‖op

≤ 1− η0σmin +
η0σmin

3
+ η0K

2(‖θt − θ0‖2 + ‖θµt − θ0‖2)

≤ 1− η0σmin +
η0σmin

3
+

6η0K
3R0

σmin

√
l

≤ 1− η0σmin

3

where we used the equality 1
l J(θ0)J(θ0)> = Φ̂0.

Hence, as we choose Λ = max{l∗, l̃, l̂, 18K3R0

σ2
min

)2}, the following holds for any width l > Λ with probability at least 1−δ0
over random initialization

‖g(θt+1‖2 ≤ ‖I − ηJ(θµt)J(θt)
>‖op

(
1− η0σmin

3

)t
R0 ≤

(
1− η0σmin

3

)t+1

R0, (94)

which finishes the proof (32).
Finally, we prove (30) by

‖Φ̂0 − Φ̂t‖F =
1

l
‖J(θ0)J(θ0)> − J(θt)J(θt)

>‖F

≤ 1

l
‖J(θ0)‖op‖J(θ0)> − J(θt)

>‖F +
1

l
‖J(θt)− J(θ0)‖op‖J(θt)

>‖F

≤ 2K2‖θ0 − θt‖2

≤ 6K3R0

σmin

√
l
,

where we used (29) and Lemma 1.

C. Analytical Expression of MAML Output
In this section, we will present Corollary 3.1. Briefly speaking, with the help of Theorem 3, we first show the training dy-

namics of MAML with over-parameterized DNNs can be described by a differential equation, which is analytically solvable.
By solving this differential equation, we obtain the expression for MAML output on any training or test task.

Remarks. This corollary implies for a sufficiently over-parameterized neural network, the training of MAML is de-
termined by the parameter initialization, θ0. Given access to θ0, we can compute the functions Φ̂0 and F0, and then the
trained MAML output can be obtained by simple calculations, without the need for running gradient descent on θ0. This nice
property enables us to perform a deeper analysis on MAML with DNNs.

Corollary 3.1 (MAML Output (Corollary 3.1 Restated)). In the setting of Theorem 1, the training dynamics of the MAML
can be described by a differential equation

dFt(X ,X ′,Y ′)
dt

= −η Φ̂0(Ft(X ,X ′,Y ′)− Y)

where we denote Ft ≡ Fθt and Φ̂0 ≡ Φ̂θ0((X ,X ′,Y ′), (X ,X ′,Y ′)) for convenience.
Solving this differential equation, we obtain the meta-output of MAML on training tasks at any training time as

Ft(X ,X ′,Y ′) = (I − e−ηΦ̂0t)Y + e−ηΦ̂0tF0(X ,X ′,Y ′) . (95)

Similarly, on arbitrary test task T = (X,Y,X ′, Y ′), the meta-output of MAML is

Ft(X,X
′, Y ′) = F0(X,X ′, Y ′) + Φ̂0(X,X ′, Y ′)T η

Φ̂0
(t) (Y − F0(X ,X ′,Y ′)) (96)

where Φ̂0(·) ≡ Φ̂θ0(·, (X ,X ′,Y ′)) and T η
Φ̂0

(t) = Φ̂−1
0

(
I − e−ηΦ̂0t

)
are shorthand notations.

Proof. For the optimization of MAML, the gradient descent on θt with learning rate η can be expressed as

θt+1 = θt − η∇θtL(θt)

= θt −
1

2
η∇θt‖Fθt(X ,X ′,Y ′)− Y‖22

= θt − η∇θtFθt(X ,X ′,Y ′)> (Fθt(X ,X ′,Y ′)− Y) (97)

Since the learning rate η is sufficiently small, the discrete-time gradient descent above can be re-written in the form of
continuous-time gradient descent (i.e., gradient flow),

dθt
dt

= −η∇θtFθt(X ,X ′,Y ′)> (Fθt(X ,X ′,Y ′)− Y)

Then, the training dynamics of the meta-output Ft(·) ≡ Fθt(·) can be described by the following differential equation,

dFt(X ,X ′,Y ′)
dt

= ∇θtFt(X ,X ′,Y ′)
dθt
dt

= −η∇θtFt(X ,X ′,Y ′)∇θtFt(X ,X ′,Y ′)> (Ft(X ,X ′,Y ′)− Y)

= −ηΦ̂t (Ft(X ,X ′,Y ′)− Y) (98)

where Φ̂t = Φ̂t((X ,X ′,Y ′), (X ,X ′,Y ′)) = ∇θtFt(X ,X ′,Y ′)∇θtFt(X ,X ′,Y ′)>.
On the other hand, Theorem 3 gives the following bound in (30),

sup
t
‖Φ̂0 − Φ̂t‖F ≤

6K3R0

σmin
l−

1
2 , (99)

indicating Φ̂t stays almost constant during training for sufficiently over-parameterized neural networks (i.e., large enough
width l). Therefore, similar to [37], we can replace Φ̂t by Φ̂0 in (98), and get

dFt(X ,X ′,Y ′)
dt

= −ηΦ̂0 (Ft(X ,X ′,Y ′)− Y) , (100)

which is an ordinary differential equation (ODE) for the meta-output Ft(X ,X ′,Y ′) w.r.t. the training time t.
This ODE is analytically solvable with a unique solution. Solving it, we obtain the meta-output on training tasks at any

training time t as,

Ft(X ,X ′,Y ′) = (I − e−ηΦ̂0t)Y + e−ηΦ̂0tF0(X ,X ′,Y ′). (101)

The solution can be easily extended to any test task T = (X,Y,X ′, Y ′), and the meta-output on the test task at any training
time is

Ft(X,X
′, Y ′) = F0(X,X ′, Y ′) + Φ̂0(X,X ′, Y ′)T η

Φ̂0
(t) (Y − F0(X ,X ′,Y ′)) , (102)

where Φ̂0(·) ≡ Φ̂θ0(·, (X ,X ′,Y ′)) and T η
Φ̂0

(t) = Φ̂−1
0

(
I − e−ηΦ̂0t

)
are shorthand notations.

D. Gradient-Based Meta-Learning as Kernel Regression
In this section, we first make an assumption on the scale of parameter initialization, then we restate Theorem 2. After that,

we provide the proof for Theorem 2.
[37] shows the output of a neural network randomly initialized following (16) is a zero-mean Gaussian with covariance

determined by σw and σb, the variances corresponding to the initialization of weights and biases. Hence, small values of σw
and σb can make the outputs of randomly initialized neural networks approximately zero. We adopt the following assumption
from [4] to simplify the expression of the kernel regression in Theorem 2.

Assumption 5 (Small Scale of Parameter Initialization). The scale of parameter initialization is sufficiently small, i.e., σw, σb
in (16) are small enough, so that f0(·) ' 0.

Note the goal of this assumption is to make the output of the randomly initialized neural network negligible. The as-
sumption is quite common and mild, since, in general, the outputs of randomly initialized neural networks are of small scare
compared with the outputs of trained networks [37].

Theorem 4 (MAML as Kernel Regression (Theorem 2 Restated)). Suppose learning rates η and λ are infinitesimal. As the
network width l approaches infinity, with high probability over random initialization of the neural net, the MAML output, (8),
converges to a special kernel regression,

Ft(X,X
′, Y ′) = GτΘ(X,X ′, Y ′) + Φ((X,X ′), (X ,X ′))T ηΦ(t) (Y −GτΘ(X ,X ′,Y ′)) (103)

where G is a function defined below, Θ is the neural tangent kernel (NTK) function from [26] that can be analytically
calculated without constructing any neural net, and Φ is a new kernel, which name as Meta Neural Kernel (MNK). The
expression for G is

GτΘ(X,X ′, Y ′) = Θ(X,X ′)T̃λΘ(X ′, τ)Y ′. (104)

where T̃λΘ(·, τ) := Θ(·, ·)−1(I − e−λΘ(·,·)τ). Besides, GτΘ(X ,X ′,Y ′) = (GτΘ(Xi, X
′
i, Y

′
i))Ni=1.

The MNK is defined as Φ ≡ Φ((X ,X ′), (X ,X ′)) ∈ RknN×knN , which is a block matrix that consists of N × N blocks
of size kn× kn. For i, j ∈ [N], the (i, j)-th block of Φ is

[Φ]ij = φ((Xi, X
′
i), (Xj , X

′
j)) ∈ Rkn×kn, (105)

where φ : (Rn×k × Rm×k)× (Rn×k × Rm×k)→ Rnk×nk is a kernel function defined as

φ((·, ∗), (•, ?)) = Θ(·, •) + Θ(·, ∗)T̃λΘ(∗, τ)Θ(∗, ?)T̃λΘ(?, τ)>Θ(?, •)

−Θ(·, ∗)T̃λΘ(∗, τ)Θ(∗, •)−Θ(·, ?)T̃λΘ(?, τ)>Θ(?, •). (106)

Here Φ((X,X ′), (X ,X ′)) ∈ Rkn×knN in (12) is also a block matrix, which consists of 1×N blocks of size kn× kn, with
the (1, j)-th block as follows for j ∈ [N],

[Φ((X,X ′), (X ,X ′))]1,j = φ((X,X ′), (Xj , X
′
j)). (107)

Proof. First, (8) shows that the output of MAML on any test task T = (X,Y,X ′, Y ′) can be expressed as

Ft(X,X
′, Y ′) = F0(X,X ′, Y ′) + Φ̂0(X,X ′, Y ′)T η

Φ̂0
(t) (Y − F0(X ,X ′,Y ′)) (108)

Note (88) in Appendix B.4 shows that

F0(X,X ′, Y ′) = f0(X) + Θ̂0(X,X ′)T̃λ
Θ̂0

(X ′, τ) (Y ′ − f0(X ′)) , (109)

With Assumption 5, we can drop the terms f0(X) and f0(X ′) in (109). Besides, from [4,26,37], we know liml→∞ Θ̂0(·, ?) =
Θ(·, ?), the Neural Tangent Kernel (NTK) function, a determinisitc kernel function. Therefore, F0(X,X ′, Y ′) can be de-
scribed by the following function as the width appraoches infinity,

lim
l→∞

F0(X,X ′, Y ′) = GτΘ(X,X ′, Y ′) = Θ(X,X ′)T̃λΘ(X ′, τ)Y ′. (110)

where T̃λΘ(·, τ) := Θ(·, ·)−1(I − e−λΘ(·,·)τ). Besides, GτΘ(X ,X ′,Y ′) = (GτΘ(Xi, X
′
i, Y

′
i))Ni=1.

In addition, from Lemma 3, we know liml→∞ Φ̂0(·, ?) = Φ(·, ?). Combined this with (110), we can express (108) in the
infinite width limit as

Ft(X,X
′, Y ′) = GτΘ(X,X ′, Y ′) + Φ((X,X ′), (X ,X ′))T ηΦ(t) (Y −GτΘ(X ,X ′,Y ′)) (111)

where Φ(·, ?) is a kernel function that we name as Meta Neural Kernel function. The derivation of its expression shown in
(105)-(107) can be found in Appendix B.4.

ANIL Kernel The above theorem derives the analytical expression of the kernel induced by MAML. Certainly that variants
algorithms of MAML will induce kernels with (slightly) different expressions. A recent impactful variant of MAML is
Almost-No-Inner-Loop (ANIL) [50]. ANIL is a simplification of MAML that retains the performance of MAML while
enjoying a significant training speedup. The key idea of ANIL is to remove the inner-loop updates on the hidden layers; in
other words, ANIL only update the last linear layer in the inner loop, resulting in a much smaller computation and memory
cost compared with MAML. Following procedures in Appendix C and D, one can straightforwardly derive the expression of
the kernel induced by ANIL, which just replaces Eq. (106) (kernel function induced by MAML) by

φ((·, ∗), (•, ?)) = Θ(·, •) +K(·, ∗)T̃λK(∗, τ)Θ(∗, ?)T̃λK(?, τ)>K(?, •)

−K(·, ∗)T̃λK(∗, τ)Θ(∗, •)−Θ(·, ?)T̃λK(?, τ)>K(?, •). (112)

where K is the neural tangent kernel function corresponds to neural networks with frozen hidden layers (i.e., only the last
linear layer is optimized by gradient descent). The appearance of K directly results from the special inner-loop update rule
of ANIL (i.e., only updates the last linear layer in the inner loop).

E. More Details on Experiments
Training Data Augmentation Following previous few-shot learning works [38, 60], in the training stage, we adopt data
augmentation operations, including random cropping, color jittering, and random horizontal flip.

Training Batch Size For all 5-cells experiments, a batch size of 64 is used. For 8-cells experiments, we set the batch size
to 40 for miniImageNet and 56 for tieredImageNet to accommodate the GPU memory of a single GPU card.

Dropout Rate We use dropout rate of 0.2 and 0.1 for miniImageNet and tieredImageNet, respectively. Following DARTS
[42], we gradually increase the dropout rate during the training.

Normalization Layers To enable efficient computation of per-sample-gradients with Opacus [76] (it does not support
BatchNorm so far), we first convert all the BatchNorm [25] layers to GroupNorm [70] layers with 16 number of groups in
the search stage. After obtaining the cells, we train and evaluate the selected architectures with BatchNorm layers.

Hyper-parameters for Computing MetaNTK MAML kernels (defined in Definition 2)) and ANIL kernels (defined in
Eq. (112)) are used for 5-cells and 8-cells experiments, respectively. To write more concisely, We denote the product of
inner loop learning rate and training time as λτ . An λτ =∞ and a regularization coefficient of 0.001 are used for all 5-cells
experiments. For 8-cells experiments, an λτ = 1 and a kernel regularization coefficient of 10−5 are used for miniImageNet
experiments while an λτ =∞ and a kernel regularization coefficient of 0.001 are used for tieredImageNet experiments.

Hyper-parameters for Evaluation In the evaluation stage, we fine-tune the last layer of the learned neural net on the
labelled support samples of each test task, and then evaluate its prediction accuracy on the query samples. Following the
evaluation strategies of RFS [60], (i) we normalize the last hidden layer output of each sample to unit norm before passing
to the last layer during the evaluation; (ii) we enlarge the set of support samples by applying data augmentation (used in
the training stage) to create 5x augmented support samples for fine-tuning. We use cross-entropy loss and hinge loss for the
fine-tuning, both with `2 regularization. For cross-entropy fine-tuning, we use the Logistic Regression (LR) solver provided
in scikit-learn [49]; for the hinge loss fine-tuning, we adopt the C-Support Vector Classification (SVC) with linear kernel
provided in scikit-learn [49]. Notice that these the `2 regularization in scikit-learn solvers is controlled by a regularization
parameter C = 1

`2 penalty On mini-ImageNet: (i) in the 5-cells case, we use SVC with C = 0.2 for 1-shot and LR with
C = 0.6 for the 5-shot experiments; (ii) in the 8-cells case, we use SVC with C = 0.35 for 1-shot and LR with C = 0.4
for the 5-shot experiments. On tiered-ImageNet: (i) in the 5-cells case, we use SVC with C = 0.75 for 1-shot and LR with
C = 0.8 for the 5-shot experiments; (ii) in the 8-cells case, we use LR with C = 0.95 for 1-shot and LR with C = 0.5 for
the 5-shot experiments.

	. Neural Network Setup
	. Proof of Global Convergence for Gradient-Based Meta-Learning with Deep Neural Networks
	. Helper Lemmas
	. Proof of Lemma 1
	. Proof of Lemma 2
	. Proof of Lemma 3
	. Proof of Theorem 3

	. Analytical Expression of MAML Output
	. Gradient-Based Meta-Learning as Kernel Regression
	. More Details on Experiments

