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1. Appendix
1.1. Dataset and Capture system

We use a multi-camera system with around 100 synchro-
nized color cameras that produces 2048 x 1334 resolution
images at 30 Hz. The cameras are focused at the center
of the capture system and distributed spherically at a dis-
tance of one meter to provide as many viewpoints as pos-
sible. Camera intrinsics and extrinsics are calibrated in an
offline process. We captured three sequences of different
hair styles and hair motions. In the first sequence, we have
one actor with a short high pony tail performing nodding
and rotating. In the second sequence, we have one actor
with a curly long releasing style hair and leaning her head
towards four directions(left, right, up and down) and rotat-
ing. In the third sequence, we have one actor with a long
high pony tail performing nodding and rotating.

1.2. Diversity in hair styles

Given that the main focus of this work is dynamic hair
capture and tracking, we selected several hairstyles with a
certain level of diversity, like long curly open hair, mid-
length fluffy straight pony tail, and long curly pony tail,
that exhibit complex dynamic behavior where hair does not
move rigidly with the head—hence are particularly well-
suited for analyzing the performance of the proposed ap-
proach. Regarding generalization, the 3D scene flow for-
mulation and the hair decoder are agnostic to specific hair
structure and color; the hair tracking algorithm depends on
artist prepared guide strands and, together with the optical
flow, requires sufficient contrast for hair strands and back-
ground. Given its strand-based nature, our method might
not be suitable for specific hairstyles like buzz cut or afro-
textured hair, where it is challenging to create the initializa-
tion of the strands. However, we want to point out that our
3D scene flow formulation, which is agnostic to hair style,
alone already improves MVP (as shown in the experiments).

1.3. Baselines

We compare against several volume-based or implicit
function based baseline methods [3,5,7] for spatio-temporal
modeling.

MVP [5] presents an efficient 4D representation for dy-
namic scenes with humans which is capable of doing an-
imation and novel view synthesis. It combines explicitly
tracked head mesh with volumetric primitives to model
the human appearance and geometry with better complete-
ness. The volumetric primitives can be aligned onto an un-
wrapped 2D UV-map from a tracked head mesh and can
be regressed from a 2D convolutional neural network that
leverages shared spatially computation. Similar to Neural
Volumes [4], a differentiable volumetric ray marching algo-
rithm is designed to render 2D rgb images on MVP in real
time. We use IV, = 4096 volumetric primitives with a voxel
resolution 8 x 8 x 8 on each sequence with a ray marching
step size around dt = 1mm. We use a global latent size of
256.

Non-rigid NeRF [7] presents an implicit function based
representation for dynamic scene reconstruction and novel
view synthesis based on NeRF [6]. It utilizes a hierarchical
model by disentangling a dynamic scene into a canonical
frame NeRF and its corresponding deformation field which
is parameterized by another MLP. In our experiments, we
use 128 sampling points for both coarse and fine level sam-
pling. We use the original implementation from the authors
here. We train different models for each sequences and each
model is trained for at least 300k iterations until conver-
gence.

NSFF [3] is another implicit function based representation
for dynamic scenes that is also based on NeRF [6]. It learns
a per-frame NeRF that is additionally conditioned on the
time index. It brings optical flow as additional supervision
and learns a 3D scene flow in parallel with the per-frame
NeRF for enforcing temporal consistency. NSFF is able to
perform both spatial and temporal interpolation on a given
video sequence. We use a setting of 256 sampling points
in our experiments, using [2] as a substitute for generating
optical flow. We use the original implementation from the
authors here. We train different models for each sequences
and each model is trained for at least 300k iterations until
convergence.



1.4. Training Details

For both tracking optimization and HVH training, We
deploy Adam [!] for optimization. For hair tracking, we
use a learning rate of 1. We set the weighting coefficients of
each losses as Wpgir = 3, Whpos = 1, Wien = 3, Wiang = 3
and wey,, = led. For each time step, 100 iterations are
taken for optimization to solve the possible hair strands at
next frame out. For HVH, we set weighting parameters for
each objective as Afjo = 1. Ageo = 0.1, Ayoy = 0.01,
Aewb = 0.01 and A7, = 0.001. All models are trained with
approximately 100-150k iterations. We use a latent code
size of 256 and per-strand hair code size of 256, raymarch-
ing step size around dt = 1mm and around N, = 5500
volumetric primitives with a voxel resolution 8 x 8 x 8 for
each sequence depending on the number of guide hairs. For
each sequence, we have roughly 30 strands for guide hair
and we sample 50 points on each strands.

1.5. Novel View Synthesis

We show a larger version of comparison figure between
different methods in Figure 1. For completeness, we also
include visualizations from a perframe NeRF model which
takes a perframe temporal code as input liker non-rigid
NeRF [7].

1.6. Ablation Studies

Temporal Consistency. We show a bigger version of ren-
dering results on unseen sequence in Figure 2.

Hair Decoder structure. As part of the hair decoder ab-
lation, we compare our method with a naive decoder that
uses the same volume decoder as MVP [5] for hair volumes.
There are two major differences: 1) the naive decoder does
not take the per-strand hair feature as input; 2) The design
of the naive decoder does not take into account the hair spe-
cific structure where it regresses the same slab as for head
tracked mesh and we take the first N4, volumes as the
output. In this way, the naive decoder discards all intrinsic
geometric structural information while doing convolutions
in each layers. We show the hair volumes layout in Figure 3.
In the naive design, the hair strands are randomly squeezed
into a square UV-map which could break the inner connec-
tions of each hair. In our design, we groom the hair strands
into the their directions which could preserve the hair spe-
cific geometric structure. We compare different designs of
decoder on Seq01. As in Table 1, our hair structure aware
decoder produces a smaller image reconstruction error and
better SSIM, a result of inductive bias of the designed hair
decoder.

We additionally compare two different designs of the
hair decoder where we do late and early fusion of the per-
strand hair feature and the global latent feature. We show
two different designs in Figure 4. Table 1 shows that the
late fusion model performs better than early fusion model.

decoder MSE SSIM PSNR
naive | 45.68/75.15 0.9549/0.9220 31.83/29.54
early fus. | 43.75/71.08 0.9533/0.9259 31.97/29.82
late fus. | 41.89/65.96 0.9543/0.9280 32.17/30.09

Table 1. Decoder structure. We compare different designs of the
hair decoder. We report all metrics on both training and testing
and we use a to separate them where on the left are the results of
novel synthesis on training sequence.

This could be because the late fusion model transfers the
1d global latent code into a spatially varying feature tensor
which is a more expressive form of feature representation.

1.7. Visualization of Flow

Please see Figure 5 for a visualization of the rendered

flow from our representation. Compared to the optical
flow from [2], our rendered 2D flow has less noise on
the background. This is because that we only define our
3D scene flow on the volumetric primitives instead of the
whole space. With the help of the coarse level geometry
like the hair strands and head tracked mesh, the scene flow
of most part of the empty space will naturally be zero. This
could help us eliminate the noise from the background op-
tical flow to certain degree.
Run Time Analysis. We report the rendering time of one
iamge at resolution 1024 x 667 for each methods here.
MVP [5] takes 0.223s. Ours takes 0.254s. NSFF takes
28.68s. NRNeRF [7] takes 41.29s. All tests are conducted
under a single Nvidia Tesla V100 GPU.

1.8. Hair Tracking Analysis

In Figure 6, we plot different hair properties over time.
We report four different metrics describing how well the
tracked hairs fit the per-frame reconstruction and how well
it preserves its length and curvature. In the first two rows,
we report the MSE between the tracked hair and the tracked
hair at first frame in terms of curvature and length. In the
last two rows, we report the cosine distance between the
direction of each nodes on the tracked guide hair and the
direction of its neighbor from the reconstruction and the
Chamfer distance between the tracked guide hair nodes and
the reconstruction. As we can see the length and curvature
are relatively preserved across frames and the affinity be-
tween the per-frame reconstruction and the tracked guide
hair is relatively high.
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Figure 2. Ablation of temporal consistency. We compare MVP [5] and ours with different variations.
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Figure 3. Hair volumes layout. We show the hair volume layout

of both naive decoder and ours.
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Figure 4. Architecture of the hair decoder. We show late fu-
sion on the top and early fusion on the bottom. The late fusion
model first deconvolves the 1D global latent code into a 2D fea-
ture map and then concatenate it with the per-strand hair features.
A 2D CNN is used afterwards to generate the hair volumes. The
early fusion model first repeat the 1D global latent vector spatially
and then concatenate the repeated feature map with per-strand hair
features. The concatenated features are than fed into a deeper 2D
CNN to generate the hair volumes.

Figure 5. Visualization of flow. We show the rendered 3D scene
flow into 2D flow in the first column and the openCV optical
flow [2] in the second column. The last column shows the ground
truth image as reference.

Figure 6. Plot of tracked hair properties v.s. time. As we can
see, the hair properties like length and curvature are not chang-
ing too much across time and hair Chamfer distance are relatively
small.



