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A. Additional Results

More input modalities. In Table 7, we further evalu-
ate our TokenFusion with more modality inputs from 1 to
4. When the number of input modalities is larger than 2, we
adopt the group allocation strategy as proposed in Sec. 3.4
of our main paper. By comparison, the performance is con-
sistently improved when using more modalities, and Token-
Fusion is again noticeably better than CEN [5], suggesting
the ability to absorb information from more modalities.

Network sharing. As mentioned in Sec. 3.4 of our main
paper, we adopt shared parameters in both Multi-head Self-
Attention (MSA) and Multi-Layer Perception (MLP) for the
fusion with homogeneous modalities, and rely on modality-
specific Layer Normalization (LN) layers to uncouple the
normalization process. Such network sharing technique is
evaluated by our experiments including multimodal image-
to-image translation (in Sec. 4.1) and RGB-depth seman-
tic segmentation (in Sec. 4.2), which largely reduces the
model size, and also enables the reuse of attention weights
for different modalities. In Table 8, we further conduct abla-
tion studies to demonstrate the effectiveness of our network
sharing scheme. Fortunately, the comparison indicates that
our default setting (i.e., Shared MSA and MLP, individual
LN) achieves a win-win scenario: apart from the advan-
tage on storage efficiency, also achieves better results than
using individual MSA and MLP on both tasks. Note that
further sharing LN layers leads to the performance drop,
especially on the image-to-image translation task. In addi-
tion, we adopt shared Positional Embeddings (PEs) by de-
fault for the fusion with homogeneous modalities, and we
observe that sharing/unsharing PEs can achieve comparable
performance in practice.

Combining TokenFusion with channel-wise fusion.
Our TokenFusion detects uninformative tokens and re-
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Modality CEN [5] Ours (Ti) Ours (S)

Depth 11391/568 108.16/550 97.13/4.97
Normal 108.20/5.42 112.25/5.77 100.29/5.02
Texture 97.51/4.82  99.70/5.14  94.92/4.38
Shade 100.96/5.17 104.73/5.43  97.35/4.77
Depth+Normal 84.33/2.70  71.82/2.36  64.20/1.69
Depth+Normal+Texture 60.90/1.56  53.17/1.22  42.54/0.93
Depth+Normal+Texture+Shade 57.19/1.33  47.69/1.01  39.15/0.81

Table 7. Results on the Taskonomy dataset for multimodal image-
to-image translation (to RGB) with 1 ~ 4 modalities.

Image translation
FID KID (x1072)

Seg. (NYUDv2)

MSA&MLP‘ LN H Pixel Acc. mAcc. mloU

Unshared | Unshared || 49.73 1.06 78.3 65.6 529
Shared Shared || 67.45 1.82 76.7 63.8 520
Shared Unshared || 43.92 0.94 78.6 66.2 533

Table 8. Results comparison when using different network sharing
schemes for image-to-image translation (Shade+Texture—RGB)
on Taskonomy and RGB-depth segmentation (seg.) on NYUDv2.
Lower FID or KID values indicate better performance.

utilizes these tokens for multimodal fusion. We may fur-
ther combine TokenFusion with an orthogonal method by
channel-wise pruning which automatically detects uninfor-
mative channels. Different from the token-wise fusion
method in TokenFusion, the channel-wise fusion is not con-
ditional on input features. Inspired by CEN [5], we lever-
age the scaling factors «y of layer normalization (LN) to per-
form channel-wise pruning, and apply sparsity constraints
on v. LN in transformers performs normalization on its

input &,,;. To prune uninformative channels, we add a

channel-wise pruning loss Z%:l ZzL:1 |vL | to the main

loss in Eq. (5) (main paper). The overall loss function is
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where A1, Ay are hyper-parameters for balancing different
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Figure 6. Additional illustrations of the token fusion process as a supplement to Fig. 4 (main paper), performed on the validation data split
of Taskonomy. We provide two cases: Texture+Shade—RGB (first row) and Shade+RGB—Normal (second row). The resolution of all
images is 256 x 256. We choose the last layers in the first and second transformer stages respectively. Best view in color and zoom in.

Seg. (NYUDv2)

Token-wise Channel-wise ‘ ‘ Pixel Acc. mAcc. mloU
~ 75.2 62.5 49.7
v X 78.6 66.2 533
% v 77.2 65.0 52.1
v v 78.8 66.6 53.8

Table 9. RGB-depth segmentation results on the NYUDv?2 dataset
when combining our TokenFusion with the channel-wise fusion.
3D det. (ScanNetV2)

Input image Seconds per

frames Model H mAP@0.25 mAP@0.5 ‘ 100 scenes
0 Ours (L6, 0256; Ti) 67.3 49.0
5 Ours (L6, 0256; Ti) 67.9 50.5
10 Ours (L6, 0256; Ti) 68.8 51.9

Table 10. Comparison of practical inference speed on ScanNetV2.

losses; !, is a vector with the length C, representing the
scaling factor of LN at the [-th layer of the m-th modality.

We let Ay = Xy = 1072 for RGB-depth segmentation
experiments. Results provided in Table 9 demonstrate that
our TokenFusion can be combined with the channel-wise
fusion to obtain a further improved performance. For ex-
ample, the segmentation on NYUDv2 with both token-wise
and channel-wise fusion achieves an additional 0.5 mloU
gain than TokenFusion. More detailed studies of such com-
bined framework, the relation between the overall pruning
rate and fusion performance gain, and the extension to fuse
heterogeneous modalities are left to be the future works.

Additional visualizations. In Fig. 6, we provide an-
other group of visualizations that depict the fused tokens
under the [; sparsity constraints during training. We ob-
serve that fused tokens follow the regularities mentioned in
our main paper, e.g., the texture modality preserves its ad-
vantage at boundaries while seeking facial tokens from the
shade modality.

Inference speed. In Table 10, we test the real inference
speed (single V100, 256G RAM) with different numbers
of input frames for 3D detection. We observe that addi-

tional time costs are mild, which is partly because the added
YOLOS-Ti is a light model (with only three multi-heads).

B. More Details of Image Translation

In this part, we discuss the implementation details for our
image-to-image translation task. Our implementation con-
tains two transformers as the generator and discriminator re-
spectively. The resolution of the generator/discriminator in-
put or the generator prediction is 256 x 256. Specifically, the
discriminator of our model is similar to [3], which adopts
five stages with two layers for each, where the embedding
dimensions and head numbers gradually double from 32 to
512 and from 1 to 16 respectively. The generator is com-
posed of nine stages where the first five have the same con-
figurations with the discriminator, and the last four stages
have reverse configurations of its first four stages.

We adopt four kinds of evaluation metrics including
Mean Square Error (MSE), Mean Absolute Error (MAE),
Fréchet-Inception-Distance (FID), and Kernel-Inception-
Distance (KID). Here we briefly introduce FID and KID
scores. FID, proposed by [2], contrasts the statistics of
generated samples against real samples. The FID fits a
Gaussian distribution to the hidden activations of Inception-
Net for each compared image set and then computes the
Fréchet distance (also known as the Wasserstein-2 distance)
between those Gaussians. Lower FID is better, correspond-
ing to generated images more similar to the real. KID, de-
veloped by [1], is a metric similar to the FID but uses the
squared Maximum-Mean-Discrepancy (MMD) between In-
ception representations with a polynomial kernel. Unlike
FID, KID has a simple unbiased estimator, making it more
reliable especially when there are much more inception fea-
tures channels than image numbers. Lower KID indicates
more visual similarity between real and generated images.
Regarding our implementation of KID, the hidden represen-
tations are derived from the Inception-v3 [4] pool3 layer.



References

(1]

(2]

(3]

(4]

(3]

Mikolaj Binkowski, Dougal J. Sutherland, Michael Arbel, and
Arthur Gretton. Demystifying MMD gans. In ICLR, 2018. 2
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In NIPS, 2017. 2

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan:
Two pure transformers can make one strong gan, and that can
scale up. In NeurIPS, 2021. 2

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016. 2
Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu
Rong, and Junzhou Huang. Deep multimodal fusion by chan-
nel exchanging. In NeurIPS, 2020. 1



	. Additional Results
	. More Details of Image Translation

