
Supplementary Material for:
Neural Face Identification in a 2D Wireframe Projection of a Manifold Object

Kehan Wang∗

University of California, Berkeley
wang.kehan@berkeley.edu

Jia Zheng Zihan Zhou
Manycore Tech Inc.

{jiajia, shuer}@qunhemail.com

1. ABC Dataset
Since ABC dataset [2] is created from Onshape public

repository, it contains many duplicate shapes, such as sim-
ple boxes and cylinders that were created when novice users
tested the Onshape software. There also exist many over-
complicated shapes that do not help our model generalize
(Figure 1(a)). To make our model learn more effectively, we
use the following set of heuristics to filter the ABC dataset
when constructing our own dataset.
Topology. Same shapes must share the same topology. To
find duplicate shapes, we first group shapes of matching
topology features together, and then find duplicates within
each group. When grouping, we consider the following
topology features: the number of parts, surfaces, edges of
a shape, and its face and edge type distribution.
Visual similarity. We then further cluster within each
group based on the visual similarity of the shapes. We use
three orthogonal views of a shape as its visual feature, and
run agglomerative clustering1 based on the Jaccard distance
of three views between two shapes.
Thickness. Because the ABC dataset contains a lot of prim-
itives which only consist of a plane, we filter out shapes
that are too thin (Figure 1(b)). The thickness of a shape is
defined as the minimum distance of all pair-wise distances
between two edges within a shape. We remove shapes that
have thickness smaller than 0.05.
Complexity. We also filter out shapes with more than 42
faces or 37 edges in a face to eliminate over-complicated
shapes that result in multiple small, overlapping faces in the
same area of the line drawing.

2. AtlasNet
In order to train AtlasNet, we convert the vectorized line

drawings to bitmap images, as shown in Figure 2. Follow-
ing SPARE3D [1], the hidden lines are drawn in red. We
adopt the original implementation2 of AtlasNet and use its

∗Work done during an internship at Manycore Tech Inc.
1We use cluster.AgglomerativeClustering from SciPy.
2https://github.com/ThibaultGROUEIX/AtlasNet

(a) (b)

Figure 1. Examples of over-complicated shapes and thin shapes in
ABC Dataset.

Figure 2. Examples of image inputs to AtlasNet.

original optimization settings.

3. Network Architecture

Figures 3 and 4 compares the network architectures of a
naive seq2seq model and our proposed model Faceformer.
In the seq2seq model, the encoder takes all co-edges and
special tokens as input. Then, the decoder takes a start to-
ken [SOS] as the first input, and outputs all face predic-
tions sequentially. In our model, every co-edge is used as
the first input to the decoder, and all faces are generated
simultaneously.

1

https://github.com/ThibaultGROUEIX/AtlasNet


E[CYLINDER] E[OTHERS] Ec1 Ec2 Ec3E[PLANE]
Value 

Embedding

Position
Embedding E3 E4 E5 E6 E7E2

Transformer Encoder

w3 w4 w5 w6 w7w2

E2 E3E1

Transformer Decoder

w7 w5w1

E4

w6

u1 u2 u3 u4
Contextual 
Embedding

Pointer using 
Softmax on 
Similarity

E1

E[SOS]

w1

[CYLINDER] [OTHERS] c1 c2 c3[PLANE]Input Sequence c3 c1[SOS] c2[SOS]

Figure 3. The network architecture of a naive seq2Seq model.

[CYLINDER] [OTHERS] c1 c2 cn[PLANE]

Input Sequence

Transformer Encoder

w2 w3 w4 w5 wn+3w1

Transformer Decoder

Contextual Embedding

c1

c2

cn

c6

c8

c6

c9

c3

c11

[PLANE]

[OTHERS]

Parallel Batched Input

Parallel Batched Output

⋮ ⋮ ⋮ ⋮

u1

u2

u1

u2

u2

u2

u3

u3

u4

⋮ ⋮ ⋮ ⋮
u3 u4

u4

c10

f1
f2

fn

f1
f2

fn

Figure 4. The network architecture of our proposed model Faceformer.

4. Experiment on Shape Complexity

We have also investigated the effect of 3D object com-
plexity on the performance of our deep face identification
model. Figure 5 shows the precision and recall versus the
number of faces and edges in the test set. As one can see,
our model’s performance remains largely stable with in-
creased complexity. Note that results for objects with more
than 25 faces or 125 edges are less informative as such ob-
jects are rare in the test set.

5. 3D Mesh Reconstruction and Alignment

The 3D object reconstruction algorithm described in the
main text (Section 5) only recovers a 3D wireframe model

of the object (by computing the depth of each vertex). To
further recover the mesh model, we use pythonOCC3, a
Python 3D development framework built upon the Open
CASCADE Technology, to connect the 3D vertices into
edges, edges into wires, and wires into faces. Specifically,
we use pythonOCC’s BRepBuilderAPI to make edges,
wires and faces. We congregate all reconstructed faces of
an object into one compound and generate its mesh with
pythonOCC’s ShapeTesselator. Unenclosed face predic-
tions are omitted through this process.

Due to orthographic projection, the mesh models recon-
structed from the 2D line drawings do not necessarily align
with the ground truth - there can be a constant amount of

3https://github.com/tpaviot/pythonocc

2

https://github.com/tpaviot/pythonocc


Figure 5. Precision and recall versus number of faces and number
of edges in a given object.

shift applied depth-wise to our mesh. To counter this, we
apply a depth-wise shift to align our meshes by minimiz-
ing depth-wise distances between our vertices and ground
truth’s vertices.

References
[1] Wenyu Han, Siyuan Xiang, Chenhui Liu, Ruoyu Wang, and

Chen Feng. Spare3d: A dataset for spatial reasoning on
three-view line drawings. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 14690–14699, 2020. 1

[2] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 9601–9611, 2019. 1

3


	. ABC Dataset
	. AtlasNet
	. Network Architecture
	. Experiment on Shape Complexity
	. 3D Mesh Reconstruction and Alignment

