Acknowledgements. XC would like to thank Kaiming He
on helpful discussions through this project. XW would like
to thank Yutong Bai on helpful discussions through this
project.

A. Cross-Image Variance

In this section, we show evidence with our MoCo v2
baseline that cross-image variance quickly converges to a
constant that only depends on the encoding dimension d.
This is through a monitor installed on the output encodings
during training. Specifically, for each iteration, we compute
the variance of the output ¢5-normalized vectors from the
source encoder along the batch axis and average them over
the channel axis. Since each training batch contains differ-
ent images rather than different views of the same image,
the resulting value reflects the cross-image variance. Three
encoding dimensions, de{64, 128,256} are experimented,
and their variances during the 100-epoch training process
are separately recorded in Fig. 4.

From the plot, we find that all the variances quickly and
separately converge to 1/d. For example, when the encod-
ing dimension d is 128 (default), the variance converges to
1/128; when d is 64, it converges to 1/64. The same obser-
vations are made regardless of other designs for the encoder
(e.g., MultiCrop or SyncBN). We believe it is a natural out-
come of Siamese representation learning which generally
encourages uniformity [10,35] — encodings of different im-
ages distribute uniformly on the unit hypersphere. There-
fore, cross-image variance is deemed not an ideal reference
to distinguish designs. Instead, we use intra-image variance
which has a much smaller magnitude (x 10~%), but carries
useful signals to tell different designs apart (see Fig. 2).

B. ScaleMix

The goal of ScaleMix is to generate a new view v® by
combining two random sampled views of the same size
(height H and width W): v! and v2. The generated new
view is treated as a normal view of the input image x and
used for Siamese learning. Specifically, following the pro-
tocol of [29], we define the combining operation as:

vi=M-vi4+(1—-M)-v?

where M€{0,1}7>W denotes a binary mask indicating
where to use pixels from which view, and - is an element-
wise multiplication. Note that different from other mixing
operations [29,45], we do not mix outputs as both views are
from the same image.

The binary values in M are determined by bounding box
coordinates B= (z, y, w, h), where (x,y) is the box center,
and (w, h) is the box size. Given B, its corresponding re-
gion in M is set to all 0 and otherwise all 1. Intuitively,

-
—

— d=64
— d=128
d=256

Variance

0 20 10 60 80 100
Epoch

Figure 4. Cross-image variance tracked during the 100-epoch
training process for our MoCo v2 baseline, with three encoding
dimension options: d€{64,128,256}. All of them quickly con-
verge to 1/d (dotted lines).

this means the region B in v'! is removed and filled with the
patch cropped from B of vZ.

The box coordinates B are randomly sampled. We keep
the aspect ratio of B fixed and the same as the input views,
and only vary the size of the box according to a random vari-
able A uniformly drawn from (0,1): w=W+/\, h=H/\.
Box centers (z, y) are again uniformly sampled.

C. Detailed Theoretical Analysis

Given the outputs: z from the source encoder and z’ from
the target encoder (prime ’ indicates target-related), the In-
foNCE [28] loss used by MoCo is defined as:

ro— _l ilog exp(Sii /7)
N & " eexp(Siir /7) + 32,4, exp(Sijr /7))
3)
where N is batch size, 7 is temperature, S;; =z z; and
Sij =z, z/; are pairwise similarities between source and tar-
get encodings. We additionally introduce the parameter ¢
that controls the weight for the positive term in the denom-
inator, where for standard loss e=1.
For MoCo, only the source encoder receives gradient,
and we take derivatives only for z;:

oL 1
9 T g i (25 — 27), “)
’ J#i

where

exp(S;j /T — S /T)
€+ Zk;ﬁi eXp(Sik//T - S“//T)

For the simplified case where ¢=0 [42], we can have:

Sij
Qg jr = Qjr = P81y /7) (6)

- Yk @P(Sin /1)

which is independent of target encoding z/.
Now, let’s consider the last linear layer immediately be-
fore z as an example for analysis. Let f be the input features

®)

aii/j’ =

of this layer, W be its weight matrix (so z=W{ and we do
not consider /5 normalization applied to z). In this case, we
can write down the dynamics of the source weight W based
on the gradient descent rule:

R
= _7ZZOCU z zTV (8)
i=1 j#i

where T is a simplified notion of the change to w.r.t. IV fol-
lowing gradient decent. Since both z} and z; come from the
target encoder weight W', we have z,=W'f] and z;=W'f]
and thus:

W——W/

Z Yo (i —EET ©)

i=1 j#i

We define f:=E[f] to be the mean of the input feature and
Y ¢:=VIf] to be the co-variance matrix of the input feature f,
where E[-] computes expectation and V-] outputs variance.
These two quantities will be used later.

Now let’s consider how intra-image variance in both tar-
get and source sides affect training. To reach a clear con-
clusion, we now make two assumptions.

Assumption 1: additive noise. We can model the intra-
image variance as additive noise. Specifically, let f be the
feature corresponding to the original image, we can assume:

. fi:f'ﬂrei. That is, the input feature of the last layer f;
receives source noise e; with Ele;|=e and V[e;]=X%;

i # :f’j +e’;. That is, the input feature f; receives target
noise € with Ele’;]=e’ and V[e]=X". Note that for
the feature of a different image f/, it also undergoes
the same process on the target side and thus we have

Note that the noise is not necessarily zero mean-ed. Since
the augmentations of f; and £/ are independent, e; and €/ are
independent of each other: IE”(eZ, e;)=P(e;)P(e}). Same for
e; and e; where i#j.

Assumption 2: all o;; are constant and independent
of f. Alternatively, if we consider the quadratic loss (i.e.,
Lo= Zj# (Sij—S;i)), then all cv;; are constant and this
assumption holds true. For InfoNCE this may not hold, and
we leverage this assumption for simplicity of derivations.

Under these two assumptions, we now compute E¢[17],
the expectation of the weight gradient over input feature f
of the last layer. This gets rid of inter-image variance, and
focuses on intra-image variance only:

1
B[] = —W'(S¢ — R). (10)

Here the residual term R is as follows:
1
R:= _NZég(f+ei)T, (11)
i=1

where &j:=3,, a;je;—e] is also a random variable
which is a weighted sum of e and e;.

From the definition (Eq. (5)), we have Zj 2 Q=1 e
and €] are independent. Therefore we can compute the

mean and variance of &, as:
E[e] = o, (12)
S=Ve] = (1+)> o)y (13)
i

Now for the residual term R, we also have E¢[R]=0.

Therefore, the full expectation for W can be written as:
. . 1
E[W] := E|[Eg[W]] = —W'%. (14)
T
This means the source weight will grow along the direc-
tion that maximizes the distance between different images.
More precisely, it grows along the eigenvector that corre-
sponds to the maximal eigenvalue of Y.

Now we can check the influence of intra-image variance
from source and target encoders. The influence can be char-
acterized by the term V¢[E¢[W]]. For simplicity, we can
compute Ve [E¢[tr(R)]] - i.e. the variance on the trace of R,
since Yy remains constant for intra-image variance.

Leveraging the independence of {&}, e; } among different
images, we can arrive at:

Vo[Ee[tr(R)]] = tr [2 (FFT +ee’ + z)} NGE,
where i’::% Zf\il 33/ is the mean of all variances of &/.

From Eq. (15) we can notice that: 1) if there is large mag-
nitude of source feature mean f and/or source noise mean &,
then the variance will be large; ii) this effect will be magni-
fied with more target-side variance (i.e., larger eigenvalues
of ¥ and thus 3), without affecting the average gradient;
iii) large magnitude of feature mean and/or noise mean on
the target side does not influence the variance. This asym-
metry between source and target suggests that the training
procedure an be negatively affected if the target variance is
too large, coupled by ff " and ee " in Eq. (15).

The intuition why there is such an asymmetry is the
following: in Eq. (9), while the target side has a subtrac-
tion fj’~ — £/ which cancels out the mean, the source side f;
doesn’t. This leads to the mean values being kept on the
source side which couples with the target variance, whereas
no mean values from the target side are kept.

Therefore, we can infer that higher variance on the target
side is less necessary compared to the source side — it will
incur more instability during training without affecting the
mean of gradients.

D. More Implementation Details

MultiCrop. Our MultiCrop recipe largely follows the work
of SWAV [6]. Specifically, 224-sized crops are sampled
with a scale range of (0.14, 1), and 96-sized small crops are
sampled from (0.05,0.14). We use m=6 small crops by
default, and each is forwarded separately with the encoder.
When applied to one encoder, all (14+6)=7 encodings are
compared against the single encoding from the other side;
when applied jointly, (7x2)=14 encodings are paired by
crop size to compute loss terms. Unlike the practice in
SwAV, no loss symmetrization is employed and the 6 losses
from small crops are averaged before adding to the stan-
dard loss. When target encoder is involved in MultiCrop,
we also create a separate memory bank [19] dedicated to
small crops, updated with 1 out of the 6 crops.

AsymAug. For StrongerAug, we use additional augmenta-
tions from RandAug [12], same as [37]. For WeakerAug,
we simply remove all the color- and blur-related augmenta-
tions and only keep geometric ones in the MoCo v2 recipe.
This leaves us with random resized cropping and flipping.

MeanEnc. Deviating from MultiCrop, augmentations used
for computing the mean are forwarded jointly through the
encoder thanks to the uniform size of 224 x224. Joint for-
warding enlarges the batch size in BN, which further re-
duces the variance. The output encodings are averaged be-
fore /5 normalization.

Other frameworks. Different from MoCo v2 which uses
shuffle BN [19] across 8 GPUs, all the frameworks stud-
ied in Sec. 6.2 use SyncBN by default. Therefore, when
applying AsymBN to them, we keep the target encoder un-
touched and change the BN in the source encoder instead.
To minimize the impact from the number of GPU devices
(e.g., MoCo v3 uses 16 GPUs to fit a batch size of 4096
for ResNet; whereas for ViT it uses 32 GPUs), we always
divide the full batch into 8 groups and the normalization is
performed within each group — this mimics the per-device
BN operation in MoCo v2 while being more general.

Moreover, for MoCo v2 we only convert the single BN in
the target projector to SyncBN. This has minimal influence
on efficiency as SyncBN can be expensive and converting
all of them (including ones in the encoder) can significantly
slow down training. Now since we are converting SyncBN
back, we choose to convert all BNs in the source encoder
whenever possible to reduce inter-device communications
for efficiency purposes.

More recent frameworks [1 1,44] adopt the asymmetric
augmentation recipe in BYOL [18], in such cases, we use
one composition for source and the other for target half the
time during pre-training, and swap them in the other half.

To have a fair comparison with frameworks pre-trained
for 100 epochs, we optionally train 2x as long when the
default loss is symmetrized and ours is asymmetric.

Unless otherwise specified, we follow the same design
choices in MoCo v2 when applying ScaleMix and MeanEnc
to other frameworks. In addition, there are subtleties asso-
ciated with each individual framework listed below:

* MoCo v3 [11]. Since MoCo v3 also employs an addi-
tional predictor on the source side, we involve both the
predictor and the backbone when applying AsymBN.

¢ SimCLR [8]. The original SimCLR uses 2xN—2
negative examples for contrastive learning [8], which
includes all the other images in the same batch, mul-
tiplied by 2 for the two augmentations per image.
After converting to the asymmetric version, we only
use N—1 negative samples — same as in MoCo v3 —
and it causes a gap. We find a simple change of In-
foNCE [28] temperature from 0.1 to 0.2 can roughly
compensate for this gap. For AsymBN, we convert all
the BNs in the source encoder, not just the ones in the
projector. For ScaleMix, we apply this augmentation
half the time — we empirically find applying ScaleMix
all the time will cause a considerable drop in perfor-
mance compared to the asymmetric baseline, for rea-
sons yet to be understood.

« BYOL [18]. BYOL initiated the additional predictor
which also has BNs. We convert all the BNs in the
source encoder when AsymBN is used, not just ones
in the projector.

e SimSiam [10]. Additional predictor is again used in
SimSiam and plays an important role in collapse pre-
vention. We convert all the BNs in the source encoder
after the conversion to an asymmetric version.

e Barlow Twins [44]. This is a fully symmetric frame-
work and no loss symmetrization is used by default.
Therefore, we also pre-train the asymmetric version
for 100 epochs, not 2x as long. Same as SimCLR,
ScaleMix is applied with half the frequency. All the
encoder BNs are converted when AsymBN is used.

ViT backbone. MoCo v3 [11] with its default hyper-
parameters for ViT backbone is used. ViT as a backbone
does not have BN. Therefore we convert BNs in the projec-
tor and predictor when using AsymBN.

Transfer learning. We follow the linear probing protocol
to evaluate our model on transfer learning tasks. Different
from ImageNet, we use SGD optimizer with momentum 0.9
and weight decay 0 for training. The learning rate is ad-
justed via grid search on the validation set, and the final
results are reported on the test set. All models are trained
for 100 epochs, with a half-cycle cosine decaying schedule
for learning rate.

	. Introduction
	. Related Work
	. Methodology Overview
	. Case Studies for Source-Target Variance
	. Study 1: MultiCrop Augmentation
	. Study 2: ScaleMix Augmentation
	. Study 3: General Asymmetric Augmentations
	. Study 4: Sync BatchNorm
	. Study 5: Mean Encoding
	. Summary of Studies

	. Theoretical Analysis for Variance
	. Generalization Studies and Results
	. Longer Training
	. More Frameworks
	. ViT Backbone
	. Design Compositions
	. Transfer Learning

	. Implementation Details
	. Conclusion
	. Cross-Image Variance
	. ScaleMix
	. Detailed Theoretical Analysis
	. More Implementation Details

