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Appendix

In this supplementary material, we provide additional

implementation details for our method (Section 1) and show

additional qualitative results (Section 2).

1. Implementation Details

In this section, we present some implementation details

that were omitted in the main paper for brevity.

The RCL module is general, and can be applied to other

action detection frameworks [4,7]. BMN [4] is a grid-based

detector which utilizes the boundary-matching network to

improve the efficienc for retrieving proposals [5]. Our RCL

module can be directly applied to replace the proposal eval-

uation module (as Figure 1). G-TAD [7] is a state-of-the-art

action detector which employs a well-designed graph mod-

ule, GCNeX, to improve the temporal representation. Since

there is no special optimization objects for the architecture,

we use the improved feature in our RCL framework. Other

settings are maintained the same as those for BMN.
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Figure 1. Design of applying RCL to BMN and G-TAD, illustrated

with abstractions.

Although the model architectures of different detec-

tors [4, 7] are different, they have common components,

which can be roughly summarized into the following

classes:

Base Feature is the part that enhances the original snippet

features with more context. BMN adopts stacks of local

convolutions to capture local-range context. G-TAD utilize

structured graphs to model long-range dependencies.

TEM is the part that predicts the starting and ending prob-

abilities for all temporal locations. BMN use these bound-

ary probability to generate more reliable confidence scores.

G-TAD and our RCL utilize this module to regularize the

training process.

PEM is the part that predicts tIoU and classification scores

on dense locations of feature maps. Specifically, BMN use

Boundary-Matching Layer [4] to sample all segment fea-

tures, and G-TAD utilizes SGAlign [7] to extract sub-graph

features.
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Figure 2. The feed-forward network for BMN and G-TAD.

By forwarding the snippet features into a convolutional

network (see Figure 2), the proposal confident scores are

computed which can be represented to the 2×D×Ts feature

maps. For THUMOS14 [3] and ActivityNet v1.3 [2], we set

D = 64, Ts = 256 for THUMOS14 and D = 100, Ts =
100 for ActivityNet v1.3 for both baseline [4, 7].

Feature alignment for CAR. As shown in Figure 3, we

use the nearest regular grid feature as the temporal repre-

sentation and add two additional input channel for temporal

coordinates. We achieve continuity by densely sampling co-

ordinates. For the regular grid feature, we sample 32 points

and extend the boundary region with 0.5 segment length,

following the original implementations [4].

Network for RRM. Inspired by the recent success in
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Figure 3. The feature alignment for continuous representation.

def f o r w a r d ( s e l f , b a s e f e a t , heatmap , i t e r s =10 , hdim =64 , cdim = 3 2 ) :

heatmap = t o r c h . l o g i t ( heatmap ) # i n v e r s e s i g m o i d

b a s e f e a t = b a s e f e a t . c o n t i g u o u s ( )

# run t h e c o n t e x t ne twork

wi th a u t o c a s t ( e n a b l e d = s e l f . m i x e d p r e c i s i o n ) :

c n e t = s e l f . c n e t ( b a s e f e a t )

ne t , i n p = t o r c h . s p l i t ( cne t , [ hdim , cdim ] , dim =1)

n e t = t o r c h . t a n h ( n e t )

i n p = t o r c h . r e l u ( i n p )

h e a t m a p p r e d i c t i o n s = [ ]

f o r i t r in range ( i t e r s ) :

heatmap = heatmap . d e t a c h ( )

w i th a u t o c a s t ( e n a b l e d = s e l f . m i x e d p r e c i s i o n ) :

ne t , up mask , d e l t a h e a t m a p = s e l f . u p d a t e b l o c k (

ne t , inp , b a s e f e a t , heatmap )

heatmap = heatmap + d e l t a h e a t m a p

re turn heatmap

Figure 4. Python code of RRM based on PyTorch.

Recurrent All-Pairs Field Transforms for Optical Flow

(RAFT [6]), we utilize the SmallUpdateBlock to re-

fine the confidence maps. The update operator is a gated

activation unit based on the variant of GRU cell:

zt = σ (Conv3×3 ([ht−1, xt] ,Wz))

rt = σ (Conv3×3 ([ht−1, xt] ,Wr))

h̃t = tanh (Conv3×3 ([rt ⊙ ht−1, xt] ,Wh))

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(1)

where xt is the concatenation of confidence scores Gt, tem-

poral features, and context features. The main forward code

are shown in Figure 4.

2. Additional Results

Scale imbalance: In Figure 5 we show the sensitivity

average-mAPN analysis, generated by the DETAD tool-

box [1], for BMN baseline with different sample densities.

First, we compared three sampling methods: (1) regu-

lar grid sampling, (2) reducing the sample ratio of 0.5× for

region with the duration greater than 0.5. (3) reducing the

（a）sparse sample （b）The sensitivity average-mAPN. 

Figure 5. The effect for irregular sample strategy. A large number

of redundant proposals exist for long-term segments.

Iter Steps Feature AP@0.5 mAP Flops

0 TSN 52.35 35.41 98.3

1 TSN 52.24 35.60 100.0

5 TSN 53.62 35.85 106.9

10 TSN 54.19 (+1.84) 35.98 (+0.57) 115.5

15 TSN 53.98 35.64 124.1

Table 1. Ablation experiments on ActivityNet v1.3 for iterations.

sample ratio of 0.5l× for region with the duration parame-

ter l = ⌊duration/0.2⌋. These sparse sample strategy are

proposed in 2D-TAN [8]. By reducing the sampling den-

sity for the long-term segment, we can see that the overall

performance has not dropped too much and the mAPN for

Coverage-XS is improve.

Note that while the sparse sampling method uses fewer

anchors, the amount of calculation remains the same as the

regular one. The discretized grid structure inherently limits

the flexibility of dynamic sampling. To maximally excavate

redundancy in the grid representation, our RCL can dynam-

ically instantiate any segments. Compared with regular grid

sample strategy and the sparse sample strategy, our continu-

ous representation and scale-invariant sample strategy has a

great advantage in predicting short-term and also performs

better for long segments.

Iterative steps for RRM: As shown in Table 1, our re-

current refine module (RRM) achieves the best results in

10 iterations, which only adds 17% FLOPs. Our proposed

model obtains a good trade-off between accuracy and com-

putational cost. More iterations usually improve mAP and

improvements saturate at 10 steps, which may be related to

overfitting.
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