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Appendix

In this supplementary material, we provide additional
implementation details for our method (Section 1) and show
additional qualitative results (Section 2).

1. Implementation Details

In this section, we present some implementation details
that were omitted in the main paper for brevity.

The RCL module is general, and can be applied to other
action detection frameworks [4,7]. BMN [4] is a grid-based
detector which utilizes the boundary-matching network to
improve the efficienc for retrieving proposals [5]. Our RCL
module can be directly applied to replace the proposal eval-
uation module (as Figure 1). G-TAD [7] is a state-of-the-art
action detector which employs a well-designed graph mod-
ule, GCNeX, to improve the temporal representation. Since
there is no special optimization objects for the architecture,
we use the improved feature in our RCL framework. Other
settings are maintained the same as those for BMN.

1.1. General components for our baseline
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Figure 1. Design of applying RCL to BMN and G-TAD, illustrated
with abstractions.

Although the model architectures of different detec-
tors [4, 7] are different, they have common components,
which can be roughly summarized into the following
classes:

Base Feature is the part that enhances the original snippet
features with more context. BMN adopts stacks of local
convolutions to capture local-range context. G-TAD utilize
structured graphs to model long-range dependencies.

TEM is the part that predicts the starting and ending prob-
abilities for all temporal locations. BMN use these bound-
ary probability to generate more reliable confidence scores.
G-TAD and our RCL utilize this module to regularize the
training process.

PEM is the part that predicts tloU and classification scores
on dense locations of feature maps. Specifically, BMN use
Boundary-Matching Layer [4] to sample all segment fea-
tures, and G-TAD utilizes SGAlign [7] to extract sub-graph
features.
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Figure 2. The feed-forward network for BMN and G-TAD.

By forwarding the snippet features into a convolutional
network (see Figure 2), the proposal confident scores are
computed which can be represented to the 2 x D x T feature
maps. For THUMOS 14 [3] and ActivityNet v1.3 [2], we set
D = 64,Ts = 256 for THUMOS14 and D = 100,7s =
100 for ActivityNet v1.3 for both baseline [4, 7].

Feature alignment for CAR. As shown in Figure 3, we
use the nearest regular grid feature as the temporal repre-
sentation and add two additional input channel for temporal
coordinates. We achieve continuity by densely sampling co-
ordinates. For the regular grid feature, we sample 32 points
and extend the boundary region with 0.5 segment length,
following the original implementations [4].

Network for RRM. Inspired by the recent success in
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Figure 3. The feature alignment for continuous representation.

def forward(self, base_feat, heatmap, iters=10, hdim=64, cdim=32):
heatmap = torch.logit(heatmap) # inverse sigmoid
base_feat = base_feat.contiguous ()

# run the context network
with autocast(enabled=self.mixed._precision):
cnet = self.cnet(base_feat)
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
net = torch.tanh(net)
inp = torch.relu(inp)
heatmap_predictions = []
for itr in range(iters):
heatmap = heatmap.detach ()
with autocast(enabled=self.mixed_precision):
net, up-mask, delta.heatmap = self.update-block(
net, inp, base.-feat, heatmap)

heatmap = heatmap + delta_heatmap
return heatmap

Figure 4. Python code of RRM based on PyTorch.

Recurrent All-Pairs Field Transforms for Optical Flow
(RAFT [6]), we utilize the SmallUpdateBlock to re-
fine the confidence maps. The update operator is a gated
activation unit based on the variant of GRU cell:

zt = 0 (Convsxs ([he—1, 2] , W2))

ry = 0 (Convzxs ([he—1, ] , W)

hy = tanh (Convsys ([ry © hy_1, 2], Wh))
he=(1—2)®h—1 + 20 hy

(1

where x; is the concatenation of confidence scores G, tem-
poral features, and context features. The main forward code
are shown in Figure 4.

2. Additional Results

Scale imbalance: In Figure 5 we show the sensitivity
average-mAP, analysis, generated by the DETAD tool-
box [1], for BMN baseline with different sample densities.

First, we compared three sampling methods: (1) regu-
lar grid sampling, (2) reducing the sample ratio of 0.5x for
region with the duration greater than 0.5. (3) reducing the
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Figure 5. The effect for irregular sample strategy. A large number
of redundant proposals exist for long-term segments.

Iter Steps | Feature AP@0.5 mAP Flops
0 TSN | 52.35 3541 98.3
1 TSN | 52.24 35.60 100.0
5 TSN | 53.62 35.85 106.9
10 TSN 54.19 +189  35.98 (+057 | 115.5
15 TSN | 53.98 35.64 124.1

Table 1. Ablation experiments on ActivityNet v1.3 for iterations.

sample ratio of 0.5! x for region with the duration parame-
ter [ = |duration/0.2]. These sparse sample strategy are
proposed in 2D-TAN [&]. By reducing the sampling den-
sity for the long-term segment, we can see that the overall
performance has not dropped too much and the mAP for
Coverage-XS is improve.

Note that while the sparse sampling method uses fewer
anchors, the amount of calculation remains the same as the
regular one. The discretized grid structure inherently limits
the flexibility of dynamic sampling. To maximally excavate
redundancy in the grid representation, our RCL can dynam-
ically instantiate any segments. Compared with regular grid
sample strategy and the sparse sample strategy, our continu-
ous representation and scale-invariant sample strategy has a
great advantage in predicting short-term and also performs
better for long segments.

Iterative steps for RRM: As shown in Table 1, our re-
current refine module (RRM) achieves the best results in
10 iterations, which only adds 17% FLOPs. Our proposed
model obtains a good trade-off between accuracy and com-
putational cost. More iterations usually improve mAP and
improvements saturate at 10 steps, which may be related to
overfitting.
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