Hyper-parameters Value

s

Top-1, ImageNet

ResNest
ResNet
& GPUNet

r7

EfficientNe
EfficientNet

ResNest
ResNet
erv2 8= GPUNet

1000 2000 3000 4000 500 6000
TensorRT FP16 Latency (s, 10~s), batch = 1

(a) GV100

Figure 7. GPUNet performance on AGX Orin and GV 100.

2000 000 00 000 10000
TensorRT FP16 Latency (s, 10~5s), batch = 1

(b) AGX Orin

sched step
decay-epochs 24
decay-rate 0.97

opt rmsproptf
b 192
epochs 450
opt-eps 0.001

j 8
warmup-Ir le-6
weight-decay le-5

drop 0.3
drop-connect 0.2
model-ema True
model-ema-decay 0.9999

aa rand-m9-mstd0.5
remode pixel
reprob 0.2

Ir 0.06
amp True
crop-pct 1.0

Table 5. The training hyper-parameters: we use Pytorch Image
Models to train GPUNet, and here [4] further explains the usage
of these hyper-parameters.

6. Supplemental Material
6.1. Training Receipts

Table. 5 shows the full details of training hyper-
parameters. We used Pytorch Image Models in training, and
we applied the same configurations to all GPUNet.

6.1.1 Sources of Baseline

The baseline models are from their original public release
to ensure fair evaluations. We only convert their models to
ONNX so that we can benchmark them in TensorRT. The
conversion is invasive to the model latency and structure,
and we use the Pytorch and Tensorflow native support for
ONNX conversions. Here is the list that shows the source
of the original implementation.

e FBNet:https / / github com /
facebookresearch/mobile-vision
« EfficietNet-X:https / / github com /

tensorflow / tpu / blob / master /
models / official / efficientnet / tpu /
efficientnet_x_builder.py

e EfficientNet:https / / github com /
rwightman/pytorch-image-models

¢ RegNet:https / / github com /
facebookresearch/pycls

e AlphaNet:https / / github com /

facebookresearch/AlphaNet

¢ ResNeSt:https / / github com /
zhanghangl989/ResNeSt
e LaNet:https : / / github com /

facebookresearch/LaMCTS

e OFA:https://github.com/mit—-han-lab/
once—for—all

6.1.2 Verify the models on more devices

In Fig. 7, we have tested GPUNet optimized for GV100 on
NVIDIA AGX Orin, and GPUNet consistently dominates
other networks in the accuracy and latency Pareto frontier.
GPUNet maintains the advantages because it replaces some
memory-bound operators (e.g., high expansion ratio in SE
layers) to compute bound operators, such as larger filters or
deeper networks. An interesting observation is that the ad-
vantages of GPUNet-2 and GPUNet-3 (latency > 3000 on
Orin) decrease on Orin w.r.t on GV100. Because GV100
has more execution units than Orin, increasing filters or
layers can better saturate the device. Therefore, the opti-
mization strategies generalized from GPUNet in sec.4.2.4
are still applicable to other devices.


https://github.com/facebookresearch/mobile-vision
https://github.com/facebookresearch/mobile-vision
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/tpu/efficientnet_x_builder.py
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/tpu/efficientnet_x_builder.py
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/tpu/efficientnet_x_builder.py
https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/tpu/efficientnet_x_builder.py
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/facebookresearch/pycls
https://github.com/facebookresearch/pycls
https://github.com/facebookresearch/AlphaNet
https://github.com/facebookresearch/AlphaNet
https://github.com/zhanghang1989/ResNeSt
https://github.com/zhanghang1989/ResNeSt
https://github.com/facebookresearch/LaMCTS
https://github.com/facebookresearch/LaMCTS
https://github.com/mit-han-lab/once-for-all
https://github.com/mit-han-lab/once-for-all

