
Supplementary Materials for:
Uformer: A General U-Shaped Transformer for Image Restoration

1. Additional Ablation Study
1.1. Is Window Shift Important

Table A reports the results of whether to use the shifted
window design [7] in Uformer. We observe that window shift
brings an improvement of 0.01 dB for image denoising. We
use the window shift as the default setting in our experiments.

Uformer-S PSNR ↑
w/o window shift 39.76
w/ window shift 39.77

Table A. Effect of window shift.

1.2. Variants of Skip-Connections

To investigate how to deliver the learned low-level fea-
tures from the encoder to the decoder, considering the self-
attention computing in Transformer, we present three dif-
ferent skip-connection schemes, including concatenation-
based skip-connection, cross-attention as skip-connection,
and concatenation-based cross-attention as skip-connection.
Concatenation-based Skip-connection (Concat-Skip).
Concat-Skip is based on the widely-used skip-connection in
UNet [3, 11, 16]. To build our network, firstly, we concate-
nate the l-th stage flattened features El and each encoder
stage with the features DK−l+1 from the (K-l+1)-th de-
coder stage channel-wisely. Here, K is the number of the
encoder/decoder stages. Then, we feed the concatenated
features to the W-MSA component of the first LeWin Trans-
former block in the decoder stage, as shown in Figure A(a).
Cross-attention as Skip-connection (Cross-Skip). Instead
of directly concatenating features from the encoder and the
decoder, we design Cross-Skip inspired by the decoder struc-
ture in the language Transformer [14]. As shown in Fig-
ure A(b), we first add an additional attention module into the
first LeWin Transformer block in each decoder stage. The
first self-attention module in this block (the shaded one) is
used to seek the self-similarity pixel-wisely from the decoder
features DK−l+1, and the second attention module in this
block takes the features El from the encoder as the keys and
values, and uses the features from the first module as the
queries.
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Figure A. Three skip-connection schemes: (a) Concat-Skip,
(b) Cross-Skip, and (c) ConcatCross-Skip.

GMACs # Param PSNR ↑
Uformer-S-Concat 43.86G 20.63M 39.77
Uformer-S-Cross 44.78G 27.95M 39.75
Uformer-S-ConcatCross 42.75G 27.28M 39.73

Table B. Different skip-connections.

Concatenation-based Cross-attention as Skip-
connection (ConcatCross-Skip). Combining above
two variants, we also design another skip-connection. As
illustrated in Figure A(c), we concatenate the features El

from the encoder and DK−l+1 from the decoder as the keys
and values, while the queries are only from the decoder.

Table B compares the results of using different skip-
connections in our Uformer: concatenating features (Con-
cat), cross-attention (Cross), and concatenating keys and
values for cross-attention (ConcatCross). For a fair com-
parison, we increase the channels in Uformer-S from 32 to
44 in variants Cross and ConcatCross. These three skip-
connections achieve similar results, and concatenating fea-
tures gets slightly better performance. We adopt the feature
concatenation as the default setting in Uformer.

1.3. More comparisons of the modulator

There are many fine details that need to be restored in
degraded images. Traditional models need to find some way
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Uformer-T Baseline w/ IDM w/ AdaIN w/ ours
PSNR ↑ 28.47 27.99 28.18 28.63

Table C. Comparisons of different modulators for deblurring.

to model these details in activations, which consumes net-
work capacity and is not always successful. However, our
modulator directly adds per-pixel learnable parameters on
activations, which effectively recovers missing details, as
demonstrated in Figure 4 of the main paper. Moreover, we
design two variants: input-dependent modulator (IDM) and
AdaIN. IDM is an input-dependent adjustment that adds a
layer to predict modulator parameters. We report the com-
parison results in Table C. Our designed modulators achieve
the best results. One possible reason for the failure of IDM
is that the model uses IDM as part of the network structure
to capture fine details rather than learning a general degrada-
tion pattern to adjust activations. Besides, AdaIN adjusts the
activations too coarsely, which may be harmful to recover
missing details.

2. Additional Experiment for Demoireing
We also conduct an experiment of moire pattern removal

on the TIP18 dataset [13]. As shown in Table D, Uformer
outperforms previous methods MopNet [5], MSNet [13],
CFNet [6], UNet [11] by 1.53 dB, 2.29 dB, 3.19 dB, and
2.79 dB, respectively. And in Figure F, we show examples
of visual comparisons with other methods. This experiment
further demonstrates the superiority of Uformer.

UNet CFNet MSNet MopNet Uformer-B[11] [6] [13] [5]
PSNR ↑ 26.49 26.09 26.99 27.75 29.28
SSIM ↑ 0.864 0.863 0.871 0.895 0.917

Table D. Results on the TIP18 dataset [13] for demoireing.

3. Additional Experimental Settings for Differ-
ent Tasks

Denoising. The training samples are randomly cropped from
the original images in SIDD [1] with size 128× 128, which
is also the common training strategy for image denoising in
recent works [3, 16, 17]. And the training process lasts for
250 epochs with batch size 32. Then, the trained model is
evaluated on the 256× 256 patches of SIDD and 512× 512
patches of the DND test images [9], following [3, 17]. The
results on DND are online evaluated.
Motion deblurring. Following previous methods [18, 19],
we train Uformer only on the GoPro dataset [8], and evaluate
it on the test set of GoPro, HIDE [12], and RealBlur-R/-
J [10]. The training patches are randomly cropped from the

training set with size 256× 256. The batch size is set to 32.
For validation, we use the central crop with size 256× 256.
The number of training epochs is 3k. For evaluation, the
trained model is tested on the full-size test images.
Defocus deblurring. Following the official patch segmen-
tation algorithm [2] of DPD, we crop the training and val-
idation samples to 60% overlapping 512 × 512 patches to
train the model. We also discard 30% of the patches that
have the lowest sharpness energy (by applying Sobel filter to
the patches) as [2]. The whole training process lasts for 160
epochs with batch size 4. For evaluation, the trained model
is tested on the full-size test images.
Deraining. We conduct deraining experiments on the SPAD
dataset [15]. This dataset contains over 64k 256×256 images
for training and 1k 512 × 512 images for evaluation. We
train Uformer on two GPUs, with mini-batches of size 16 on
the 256×256 samples. Since this dataset is large enough and
the training process converges fast, we just train Uformer
for 10 epochs in the experiment. Finally, we evaluate the
performance on the test images following the default setting
in [15].
Demoireing. We further validate the effectiveness of
Uformer on the TIP18 dataset [13] for demoireing. Since
the images in this dataset contain additional borders, fol-
lowing [5], we crop the central regions with the ratio of
[0.15, 0.85] in all training/validation/testing splits and resize
them to 256 × 256 for training and evaluation. Since this
task is sensitive to the down-sampling operation, we choose
the bilinear interpolation same as the previous work [5]1.
The training epochs are 250.

4. More Visual Comparisons

As shown in Figures B-F in this supplementary materials,
we give more visual results of our Uformer and others on
the five tasks (denoising, motion deblurring, defocus deblur-
ring, deraining, and demoireing) as the supplement of the
visualization in the main paper.

5. Limitation and broader impacts

Thanks to the proposed architecture, Uformer achieves
the state-of-the-art performance on a variety of image restora-
tion tasks (image denoising, deblurring, and deraining). But
we have not evaluated Uformer for more vision tasks such
as image-to-image translation, image super-resolution, and
so on. We look forward to investigating Uformer for more
applications. Meanwhile, we notice that there are several
negative impacts caused by abusing image restoration tech-
niques. For example, it may cause human privacy issue with
the restored images in surveillance. The techniques may
destroy the original patterns for camera identification and

1The dataset we used is also downloaded from the Github Page of [5].



multi-media copyright [4], which hurts the authenticity for
image forensics.
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Figure B. More visual results on the SIDD dataset [1] for image denoising. The PSNR value under each patch is computed on the
corresponding whole image.



Input / 19.45 dB SRN / 23.62 dB DBGAN / 23.56 dB DMPHN / 22.74 dB

DeblurGAN-v2 / 21.54 dB MPRNet / 25.67 dB Uformer-B / 27.00 dB Target

Input / 25.84 dB SRN / 31.21 dB DBGAN / 32.40 dB DMPHN / 31.74 dB

DeblurGAN-v2 / 29.55 dB MPRNet / 32.55 dB Uformer-B / 33.77 dB Target

Input / 21.13 dB SRN / 27.42 dB DBGAN / 29.21 dB DMPHN / 28.43 dB

DeblurGAN-v2 / 25.42 dB MPRNet / 32.36 dB Uformer-B / 32.66 dB Target

Input / 23.04 dB SRN / 27.14 dB DBGAN / 28.20 dB DMPHN / 28.05 dB

DeblurGAN-v2 / 25.00 dB MPRNet / 29.13 dB Uformer-B / 30.65 dB Target

Figure C. More results on GoPro [15] for image motion deblurring. The PSNR value under each patch is computed on the corresponding
whole image.



Input / 28.44 dB DPDNet / 28.48 dB KPAC / 28.57 dB Uformer-B / 29.26 dB Target

Input / 22.98 dB DPDNet / 26.94 dB KPAC / 26.88 dB Uformer-B / 27.81 dB Target

Input / 24.36 dB DPDNet / 27.56 dB KPAC / 27.49 dB Uformer-B / 28.60 dB Target

Input / 25.58 dB DPDNet / 29.13 dB KPAC / 28.99 dB Uformer-B / 29.30 dB Target

Figure D. More results on DPD [2] for image defocus deblurring. We report the performance of PSNR on the whole test image and show the
zoomed region only for visual comparison.

Input / 29.29 dB RCDNet / 38.67 dB SPANet / 37.15 dB Uformer-B / 47.37 dB Target

Input / 22.13 dB RCDNet / 30.00 dB SPANet / 27.18 dB Uformer-B / 37.12 dB Target

Input / 26.50 dB RCDNet / 31.47 dB SPANet / 29.72 dB Uformer-B / 37.44 dB Target

Figure E. More results on SPAD [15] for image deraining.



Input / 19.47 dB UNet / 29.62 dB MopNet / 30.45 dB Uformer-B / 32.74 dB Target

Input / 14.99 dB UNet / 26.78 dB MopNet /25.44 dB Uformer-B / 31.76 dB Target

Input / 19.98 dB UNet / 26.27 dB MopNet / 29.41 dB Uformer-B / 30.79 dB Target

Input / 17.15 dB UNet / 19.35 dB MopNet / 18.84 dB Uformer-B / 26.86 dB Target

Input / 15.20 dB UNet / 28.17 dB MopNet / 29.09 dB Uformer-B / 30.63 dB Target

Figure F. Results on the TIP18 dataset [15] for image demoireing.


