Supplementary Material:
Self-supervised Neural Articulated Shape and Appearance Models

Rohan Chabra?
Chris Sweeney?

Fangyin Wei'*
Szymon Rusinkiewicz'

'Princeton University

Revolute 1
+

R —

w
o Revolute 1 & fg
8 k] rismatic 1
§ ¥ &
&
t
Revolute 2
Prismatic 1
o
k] % Revolute2 2
2 = * E Prismatic 2
A = g

Revolute 1

Revolute 1

Revolute 1 Prismatic

Dishwasher
FridgeUD
Drawer+Door

Revolute 2 Revolute 1

Revolute 1

Figure 1. Objects. We show one sample object from each category
in one articulation state. The joints and their types are annotated.

In this supplementary material, we describe details of
dataset preparation in Sec. 1 and implementation details for
training, inference, and experiments on real data in Sec. 2.
In Sec. 3, we provide more quantitative and qualitative re-
sults.

1. Dataset

All experiments use SAPIEN [5], a large-scale, public
domain dataset containing 2346 articulated objects across
46 categories. We select six categories with representa-
tive articulation types and a sufficient number of instances:
laptop, stapler, dishwasher, two-door fridge (LR for left
and right, UD for up and down), eyeglasses, and storage
furniture with drawer(s) (and door) (Drawer is for single-
drawer furniture, DrawerUD for two-drawer furniture, and
Drawer+Door for furniture that has one drawer and one
door). Note that we follow the same classification practice
of A-SDF. For example, FridgeLLR and FridgeUD both be-
long to the category of two-door fridges, but we still trained

*Work done during internship at Reality Labs Research.

Lingni Ma?

Christoph Lassner? Michael Zollhoefer?
Richard Newcombe? Mira Slavcheva?

ZReality Labs Research

Table 1. Dataset details. We list the details of the SAPIEN data
set for synthetic experiments. It covers a wide range of object
classes and joint types. For each category, we show the number
of joints of each type (revolute or prismatic), the number of object
instances in the training and testing splits, the number of artic-
ulations sampled for training, and the number of views used for
training and testing.

Category #joint train / test split #art. train/test #view
Laptop 1 revolute 35/11 10 60/6
Stapler 1 revolute 15/5 10 60/6
Dishwasher 1 revolute 18/6 10 60/6
Eyeglasses 2 revolute 48/14 36 60/6
FridgeLR 2 revolute 8/3 36 60/6
FridgeUD 2 revolute 12/4 36 60/6
Drawer 1 prismatic 2117 10 60/6
DrawerUD 2 prismatic 27/9 36 60/6
Drawer+Door 1 revolute, 1 prismatic 9/4 100 60/6

two separate models because A-SDF treated these two as
two categories. We didn’t try training on a combined cate-
gory, but we expect it to work. The different combinations
of joint types and numbers in total make nine different cat-
egories. We display one example of each category in Fig. 1.

To render the shapes, we normalize them to fit in a unit
sphere and make sure that the same object with different
articulations are normalized in the same way (their non-
motion parts are aligned). We use the SAPIEN simulation
environment [5] to render RGB images and correspond-
ing masks. During training and testing, we sample every
10° for rotational joints and 10 states in total for sliding
joints. For multiple joints, we take all combinations of ev-
ery single joint sampling. For each articulation, 60 views
are sampled for training and 6 views for inference. Cameras
are placed on vertices of a randomly rotated rhombicosido-
decahedron for 60 views (octahedron for 6 views) with the
object in its center. The RGB images and masks are of res-
olution 640 x 480. These details are summarized in Tab. 1.

We set the angle range to train and test on revolute joints
following A-SDF [2]. To evaluate interpolation, for every
two neighboring testing articulations, we use the codes for

Articulation State 0 Articulation State 9

Figure 2. Articulations used in the experiments are not aligned.

these two articulations to interpolate the middle point. Con-
cretely, for the stapler and dishwasher with training and test-
ing angles {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}, the angles
used for evaluating interpolation are {5, 15, 25, 35, 45, 55,
65, 75, 85}. For laptop, angles used for training and test-
ing are {-72, -62, -52, -42, -32, -22, -12, -2, 8, 18} and
used for interpolation are {-67, -57, -47, -37, -27, -17, -7, 3,
13}. For the eyeglasses and fridge (fridgeLR and fridgeUD)
with training and testing angles {0, 10, 20, 30, 40, 50} for
each joint, the angles used for evaluating interpolation are
{5, 15, 25, 35, 45}. For the drawer in storage furniture
(Drawer, DrawerUD, Drawer+Door), we sample 10 articu-
lations with equal distance for training and testing and use
the 9 midpoints of the 10 articulations for interpolation. For
the door in storage furniture (Drawer+Door), we use {0, 10,
20, 30, 40, 50, 60, 70, 80, 90} for training and testing, and
{5, 15, 25, 35, 45, 55, 65, 75, 85} to evaluate interpolation.

To clarity, aligned articulation is not required in training.
In fact, SAPIEN objects are not aligned and we do not align
them in our experiments. In Fig. 2, for example, eyeglasses
at the articulation states 0 and 9 differ in the lens-leg angles.
However, if articulations are roughly aligned, we can also
leverage it by sharing articulations (main paper Sec. 3.2) in
variants Ours-Art/ArtDef.

2. Implementation Details
2.1. Network Architecture

The architecture of the geometry and appearance net-
works in our method follows exactly the description in
IDR [6]. Concretely, the geometry network takes a 256-
dimensional geometry feature and 3-dimensional 3D query
location (and optionally an 8-dimensional articulation fea-
ture if running without deformation field) as input and pre-
dicts a single SDF value. When included, the deforma-
tion module takes in a 256-dimensional geometry feature,
3-dimensional 3D query location and an 8-dimensional ar-
ticulation feature as input and predicts a 3-dimensional dis-
placement for the query point, which is added to the original
query point and then passed to the geometry network. Both
the geometry and the deformation network have eight fully
connected hidden layers with a width 512 and a last fully
connected layer with output dimension 1 or 3 for their cor-
responding predictions. There is a single skip connection
from the input to the middle layer. The fully connected lay-
ers are interlaced with softplus activation in both networks.
We follow the non-linear maps [0] on the input query points.

We initialize the weights of the geometry network so that it
produces an approximate SDF of a unit sphere.

In the appearance network, there are four fully connected
layers with output dimension 512 and a last fully connected
layer with output dimension 3 for color prediction. The in-
put is a concatenation of the following: a 256-dimensional
appearance feature for each object, a 3D surface point and
its normal, and the viewing direction. We use the ReLU ac-
tivation between hidden layers of the appearance network
and tanh for the output to get valid color values.

2.2. Training and Inference

For training, latent codes are randomly initialized with
N(0, %), where [is the code length. We set p = 100, A =
0.1, 8 = 0.0001 for the loss in Eq. 7 of the main paper.
We start with o = 50 and multiply it by a factor of 2 every
50,000 iterations (up to a total of 5 multiplications). The
networks are trained using ADAM optimizer with a learning
rate starting from 0.0001 and decreasing by a factor of 2 at
the 50% and 75% point of the total number of iterations.

During inference, articulation codes are initialized to the
mean of all learned articulation codes, while other codes
are initialized as in training. To reconstruct unseen testing
objects, we first optimize the geometry, articulation, and
appearance codes through backpropagation for 600 itera-
tions with learning rate starting from 0.009 and decreasing
by a factor of 2 at 300 and 450 iterations. If we do test-
time adaptation [2], we further optimize both the codes and
the network weights for another 600 iterations with learn-
ing rate starting from 0.00005 and decreasing by a factor of
2 at 300 and 450 iterations. For both optimization stages,
we start with a = 50 and multiply it by a factor of 2 every
100 iterations (up to a total of 5 multiplications). Then we
run another forward pass to predict SDF values and render
images. The Marching Cubes algorithm is used to extract
an approximate iso-surface given the predicted SDF values.

2.3. Real Experiment Setup

We test the model trained on synthetic laptops and draw-
ers and directly apply the trained models to real-world
phone-captured static objects. We use a personal cell phone
to record a static opened laptop or drawer with fixed focal
length and exposure. We then run Structure-from-Motion
(SfM) algorithm [3] on the captured frames to estimate the
camera calibration parameters and their poses. For each
view, we then run https://remove.bg to estimate a segmenta-
tion mask for the foreground object. We use seven input im-
ages to reconstruct the laptop and 24 images to reconstruct
the drawer in Fig. 1 of the main paper. We test our model
trained on synthetic data from SAPIEN with deformation
field and shared articulation code on these real-world im-
ages. The shape, articulation, and appearance codes are ini-
tialized as described earlier, we then jointly fine-tune both

4F14 4 oll'e'e

Input RGB NR-NeRF Ours RGB Ours3D InputRGB ~ NR-NeRF Ours RGB Ours 3D

Figure 3. Comparison with NR-NeRF [4] on articulating a laptop.

BEEw_2 ﬂ

a Phone camera (input 3840x2160 px) b) RBO data (mput 640x480 px)

Figure 4. Reconstruction from a single RGB image. We show

input RGB, output appearance and normals, other untextured views.

the network weights and the codes on these images for 2000
iterations. At this point, we are able to reconstruct the static
real objects. Then by replacing the inferred articulation
code with the articulation codes learned during training, we
are able to articulate the static reconstruction realistically.

3. Results

Full quantitative results. In Tab. 2, we show the full
list of results for each variant of our method. We observe
that with deformation field it manages better with topology
changes, but it takes longer to train. This is why the results
of Ours-Def and Ours-ArtDef might be numerically worse
as those models did not get to the same number of iterations
in the same training time as without deformation field. We
also observe that sometimes TTA may cause the model to
optimize towards a local minimum, e.g. overfitting to ap-
pearance while making the geometry worse. The errors are
larger on bulky objects like fridges, drawers, dishwashers,
where the concave geometry is visible from very few views,
so a method that only uses RGB information may not have
enough coverage to carve the space out. While the num-
bers may not reflect all variants’ strengths, combined with
visualizations, we observe variants with deformation handle
large topology changes better. This is confirmed in Tab. 2
where ours-Def TTA performs the best on the stapler.

Comparison with NeRF-extension. In Fig. 3, we show a
comparison with NR-NeRF [4], a representative NeRF ex-
tension to multi-view dynamic scenes. We ran its official
code and our method on a SAPIEN laptop with the same
60 views x 10 angles setting. We observe that despite only
recovering a single scene, NR-NeRF performs poorly due
to large inter-frame movements.

Results on RBO dataset [1]. RBO dataset [1] only has
monocular videos of articulated objects with fixed camera-
object pose, so it is improper to evaluate our multi-view
method. We still tested our single-view reconstruction on
our real phone camera data and RBO in Fig. 4. It succeeds
on high-res phone images, but on noisy, low-res RBO data it

recovers plausible appearance but poor geometry that looks
correct only from the input view. This strongly indicates
that a few more views will be sufficient to disambiguate
even noisy input. The Chamfer-L1 distance of the RBO
example is 5.75 after scale determination, which is close to
the DeepSDF error reported in A-SDF [2], even though we
do not use 3D input.

4. Video

Please refer to the video for more results on reconstruc-
tion, interpolation and extrapolation on testing synthetic
data, as well as reconstruction and animation on real data.

References

[1] Roberto Martin-Martin, Clemens Eppner, and Oliver Brock.
The rbo dataset of articulated objects and interactions. The
International Journal of Robotics Research, 38, 2018. 3

[2] Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille,
Nuno Vasconcelos, and Xiaolong Wang. A-SDF: Learning
disentangled signed distance functions for articulated shape
representation. In ICCV, 2021. 1,2, 3

[3] Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2

[4] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhofer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In ICCV,
2021. 3

[5] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, et al. Sapien: A simulated part-based interactive
environment. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11097—
11107, 2020. 1

[6] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020. 2

Table 2. Reconstruction results on unseen synthetic shapes (Chamfer-L.1). We compare all variants of our proposed method. This table
corresponds to Table 2 from the main paper.

Method Laptop Stapler Dishwasher Eyeglasses FridgeLR FridgeUD Drawer DrawerUD Drawer+Door
Ours-base 0.383 1.453 3.269 1.771 2.969 4.683 2.924 5.326 2.786
Ours-Art 0.328 1.560 2.962 1.735 3.955 3.332 3.114 4.185 3.416
Ours-Def 0.363 1.026 4.046 2.558 1.976 5.007 3.005 5.726 3.394
Ours-ArtDef 0.382 1.125 3.945 9.790 2.738 3.648 2.627 5.979 3.264
Ours-base TTA 0.345 1.336 3.187 1.606 1.637 4.614 2.940 5.100 2.899
Ours-Art TTA 0.475 1.400 2.881 1.659 2.635 3.238 3.135 4.166 3.897
Ours-Def TTA 0.333 0.815 4.046 2.026 2.244 4.669 3.042 5.335 3.652

Ours-ArtDef TTA 0.355 0.936 3.936 7.894 2.063 3.649 2.745 5912 3.243

	. Dataset
	. Implementation Details
	. Network Architecture
	. Training and Inference
	. Real Experiment Setup

	. Results
	. Video

