
Supplementary Material for “Target-Relevant Knowledge Preservation for

Multi-Source Domain Adaptive Object Detection”

In this supplementary material, we provide more imple-

mentation details of the detector in Sec. A, detailed exper-

imental results for the settings of Cross Time Adaptation

and Mixed Domain Adaptation in Sec. B, visualization re-

sults of the HTRM module in Sec. C as well as discussion

on limitations of our approach in Sec. D.

A. More Implementation Details

In this section, we provide more implementation details

about the network structure of the teacher detector TeDet(·).
Since the student detector StDet(·) shares the same struc-

ture as the teacher detector, we therefore only describe the

details of TeDet(·). Without loss of generality, we consider

TeDet(·) with the AMSD module for two source domains.

As shown in Fig. A, TeDet(·) consists of the VGG-16 back-

bone, RPN, RoI Align, RoI feature extractor, GRL and the

multiple heads, where their configurations and the sizes of

channels/feature maps are also displayed.

Images from each source domain are applied to train

the corresponding head and perform adversarial learning on

the other heads. Given an image from the target domain,

the multiple heads make predictions simultaneously based

on proposals from the shared RPN. On each proposal, the

predicted classification and regression results from multi-

heads are aggregated by averaging before non-maximum

suppression. We implement the overall training process of

the teacher-student framework based on the open source1

of UBT [3]. In all experiments, we adopt VGG-16 [8] pre-

trained on ImageNet [1] as the backbone.

B. Detailed Experimental Results

In this section, we display more experimental results for

the settings of Cross Time Adaptation in Sec. B.1 and Ex-

tension to Mixed Domain Adaptation in Sec. B.2, respec-

tively.

B.1. Cross Time Adaptation

As demonstrated in Table A, we report the AP of all cat-

egories on the BDD100K dawn/dusk subset. By following

[11], the result on the category ’train’ is not reported. The

1https://github.com/facebookresearch/unbiased-teacher

proposed TRKP approach outperforms the other counter-

parts for most categories. Both AMSD and HTRM improve

the detection performance for almost all the categories and

achieve the best result when they are combined.

B.2. Extension to Mixed Domain Adaptation

More results for the setting of Mixed Domain Adapta-

tion are summarized in Table B, where the category “train”

with very few instances is ignored as in [9]. With more

available sources, the detection performance is consistently

improved for most categories except for “rider”, where the

results drop when introducing more data. The reason behind

probably lies in the huge domain gap and category shift be-

tween the source domains w.r.t. the ‘rider’ class. Despite

of that, our method reaches the best results in most cases,

showing its effectiveness.

C. Visualization of HTRM

To display the effectiveness of the HTRM module,

we demonstrate the images with different target-relevance

weights in the Cross Time Adaptation setting on the

BDD100K dataset.

Recall that the source domains consist of images from

Daytime and Night, and the target domain from Dawn/Dust.

As shown in Fig. B, the source image with a larger weight

α clearly has a more similar appearance to those from the

target, in regard of the illumination condition.

D. Discussion on limitations.

The existing study [11] considers two sources (cross

camera and cross time). Although we extend it to a harder

case with three sources, the experimental setting of multi-

source DAOD is still at street views. We will consider more

source domains and larger domain gaps to further improve

the generality in our future work.
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Figure A. Illustration of the detailed network architecture of the teacher detector TeDet(·) with the AMSD module for two source domains.

The configuration and the sizes of channels/feature maps are also presented. “Block” stands for the convolutional network layers of

VGG [8] and “FC” refers to the fully-connected layer. “W × H” and “C” indicate the image size and the number of object categories,

respectively.

Setting Source Method bike bus car motor person rider light sign train truck mAP

Source

Only

D

FRCNN [5]

35.1 51.7 52.6 9.9 31.9 17.8 21.6 36.3 - 47.1 30.4

N 27.9 32.5 49.4 15.0 28.7 21.8 14.0 30.5 - 30.7 25.0

D+N 31.5 46.9 52.9 8.4 29.5 21.6 21.7 34.3 - 42.2 28.9

Single

Source
D

SW [6] 34.9 51.2 52.7 15.1 32.8 23.6 21.6 35.6 - 47.1 31.4

SCL [7] 29.1 51.3 52.8 17.2 32.0 19.1 21.8 36.3 - 47.2 30.7

GPA [10] 36.6 52.1 53.1 15.6 33.0 23.0 21.7 35.4 - 48.0 31.8

CRDA [9] 32.8 51.4 53.0 15.4 32.5 22.3 21.2 35.4 - 47.9 31.2

UMT [2] 39.7 52.3 56.1 14.2 35.7 23.7 31.5 42.2 - 42.4 33.8

UBT [3] (Baseline) 37.4 52.3 56.6 14.3 35.0 22.9 31.1 40.3 - 42.6 33.2

Single

Source
N

SW [6] 31.4 38.2 51.0 9.9 29.5 22.2 18.7 32.5 - 35.7 26.9

SCL [7] 25.3 31.7 49.3 8.9 25.8 21.2 15.0 28.6 - 26.2 23.2

GPA [10] 32.7 38.3 51.8 14.1 29.0 21.5 17.1 31.1 - 40.0 27.6

CRDA [9] 32.3 45.1 51.6 7.2 29.2 24.9 19.9 33.0 - 41.1 28.4

UMT [2] 37.9 18.4 50.4 8.8 24.7 11.6 15.1 30.1 - 19.4 21.6

UBT [3] (Baseline) 42.7 18.8 52.5 8.2 26.5 20.0 19.7 29.5 - 23.7 24.2

Source

Combined
D+N

SW [6] 29.7 50.0 52.9 11.0 31.4 21.1 23.3 35.1 - 44.9 29.9

SCL [7] 33.9 47.8 52.5 14.0 31.4 23.8 22.3 35.4 - 45.1 30.9

GPA [10] 31.7 48.8 53.9 20.8 32.0 21.6 20.5 33.7 - 43.1 30.6

CRDA [9] 25.3 51.3 52.1 17.0 33.4 18.9 20.7 34.8 - 47.9 30.2

UMT [2] 42.3 48.1 56.4 13.5 35.3 26.9 31.1 41.7 - 40.1 33.5

UBT [3] (Baseline) 40.5 49.9 56.4 14.5 33.7 23.6 30.4 40.0 - 41.6 33.1

MSDA D+N

MDAN [12] 37.1 29.9 52.8 15.8 35.1 21.6 24.7 38.8 - 20.1 27.6

M3SDA [4] 36.9 25.9 51.9 15.1 35.7 20.5 24.7 38.1 - 15.9 26.5

DMSN [11] 36.5 54.3 55.5 20.4 36.9 27.7 26.4 41.6 - 50.8 35.0

HTRM (Ours) 41.6 50.9 58.3 21.5 37.6 24.7 35.3 43.6 - 41.3 35.5

AMSD (Ours) 44.0 55.3 60.1 17.7 39.8 26.7 37.9 46.9 - 51.2 38.0

TRKP (Ours) 48.4 56.3 61.4 22.5 41.5 27.0 41.1 47.9 - 51.9 39.8

Oracle BDD100K FRCNN [5] 27.2 39.6 51.9 12.7 29.0 15.2 20.0 33.1 - 37.5 26.6

Table A. Detailed results for the setting of Cross Time Adaptation. ‘D’ and ‘N’ indicate the daytime and night subsets of BDD100K. mAP

(%) for all the classes and detailed AP (%) of each individual category on BDD100K dawn/dusk are reported. Best in bold.
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Setting Source Method person car train rider truck motor bicycle bus mAP

Source Only C FRCNN [5] 26.9 44.7 - 22.1 17.4 17.1 18.8 16.7 23.4

Single Source C UBT [3] (Baseline) 37.8 50.9 - 38.2 21.3 19.9 29.9 10.9 29.7

Source Only C+M FRCNN [5] 35.2 49.5 - 26.1 25.8 18.9 26.1 26.5 29.7

Source Combined C+M UBT [3] (Baseline) 30.7 28.0 - 3.9 11.2 19.2 17.8 18.7 18.5

MSDA C+M HTRM (Ours) 34.6 48.3 - 20.2 21.7 26.7 32.0 34.1 31.1

MSDA C+M AMSD (Ours) 38.6 52.1 - 28.2 22.9 24.9 28.5 33.3 32.6

MSDA C+M TRKP (Ours) 39.2 53.2 - 32.4 28.7 25.5 31.1 37.4 35.3

Source Only C+M+S FRCNN [5] 36.6 49.0 - 22.8 24.9 26.9 28.4 27.7 30.9

Source Combined C+M+S UBT [3] (Baseline) 32.7 39.6 - 6.6 21.2 21.3 25.7 28.5 25.1

MSDA C+M+S HTRM (ours) 37.7 50.2 - 20.5 32.7 27.0 30.4 35.7 33.5

MSDA C+M+S AMSD (ours) 40.1 52.8 - 25.3 25.9 29.1 31.8 36.2 34.5

MSDA C+M+S TRKP (ours) 40.2 53.9 - 31.0 30.8 30.4 34.0 39.3 37.1

Oracle BDD100K FRCNN [5] 35.3 53.9 - 33.2 46.3 25.6 29.3 46.7 38.6

Table B. Detailed results for the setting of Mixed Domain Adaptation. ‘C’/‘M’/‘S’ indicate Cityscapes/MS COCO/Synscapes, respectively.

mAP (%) and detailed AP (%) of each category on BDD100K daytime are reported.

Figure B. Visualization of the source images ranked by weights generated via HTRM on BDD100K. With a larger target-relevance weight

α, the corresponding source image appears more similar to the images from the target domain, i.e. dawn/dusk.
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