
Supplementary Materials

A. Proof of Proposition 1
Proof. Since the linear classifier is supervised via the mar-
gin loss for each training sample (x, y)

Lm(x, y) =
∑
i ̸=y

[m− c(g(x))y + c(g(x))i]+ (1)

We can rewrite the loss for binary classification in a batch-
wise representation as

L =
∑

(x,y)∈S

Lm(x, y) (2)

=
∑

xp∈S+

[
m− wT

+xp + wT
−xp

]
+

+
∑

xn∈S−

[
m+ wT

+xn − wT
−xn

]
+

after one-step of gradient descending, the newly updated
classifiers are represented as

w′
+ = w+ − η ▽w+ L w′

− = w− − η ▽w− L (3)

Where η > 0 is the learning rate of gradient descending and
the gradient w.r.t weight parameter is in the form as

▽w+L =
∑

xn∈S−

δ(m > wT
−xn − wT

+xn)xn (4)

−
∑

xp∈S+

δ(m > wT
+xp − wT

−xp)xp

▽w−L =
∑

xp∈S+

δ(m > wT
+xp − wT

−xp)xp (5)

−
∑

xn∈S−

δ(m > wT
−xn − wT

+xn)xn

With simple variable substitution, we can derive the pre-
dicted logit value of xt as

w′T
+ xt = wT

+xt + ηI(xt;S) (6)

w′T
− xt = wT

−xt − ηI(xt;S)

Here we take the situation where p+(xt) > p−(xt) as ex-
ample, the other side can be proved in a similar way. With

the softmax activation and Eq (6), the query function Q(xt)
can be expressed as

Q(xt) = 1− (p+(xt)− p−(xt)) (7)

= 1− ew
T
+xteηI − ew

T
−xte−ηI

ew
T
+xteηI + ew

T
−xte−ηI

=
2ew

T
−xte−ηI

ew
T
+xteηI + ew

T
−xte−ηI

≜ Q̃(I;xt)

where I is abbreviation for I(xt;S). With Eq (7), the
query function Q(xt) can be regarded as a function of
I. Since both p+(xt) and p−(xt) are probabilities and
p+(xt) > p−(xt), it is easy to verify Q̃(I;xt) ∈ (0, 1),
thus we can validate the corresponding monotonicity by the
derivative w.r.t I(xt;S)

∂Q̃(I;xt)

∂I
= η

[(
1− Q̃ (I;xt)

)2

− 1

]
< 0 (8)

Thus Q(xt) is decreasing monotonically w.r.t I(xt;S).

B. Proof of Proposition 2
Proof. The proof follows the theoretical insight from
MME [7], in terms of [1], the risk on target domain can
be bounded by

ϵt(h) ≤ ϵs(h) + dH(Ps,Pt) + C0 (9)

where dH(Ps,Pt) represents the H-divergence between
source distribution Ps and target distribution Pt

dH(Ps,Pt) = 2 sup
h∈H

|P(h(xs) = 1)− P(h(xt) = 1)|

(10)

From the main text, the formulation of domain classifier
family is defined as

H =
{
δ(|wT

+x− wT
−x| ≥ m)|w+, w− ∈ RD

}
(11)

where w+, w−,m, δ(·) follow the same definition as the
main part of paper. Further, with the assumption P(h(xt) =



1) ≤ P(h(xs) = 1), the Eq (10) can be rewritten as

dH(Ps,Pt) = 2 sup
h∈H

|P(h(xs) = 1)− P(h(xt) = 1)|

= 2 sup
h∈H

(P(h(xs) = 1)− P(h(xt) = 1))

≤ 2 sup
h∈H

P(h(xs) = 1)

= 2 sup
w+,w−

P(|wT
+xs − wT

−xs| ≥ m) (12)

Therefore, the derivation of Eq (12) indicates that the H-
divergence is bounded by the maximum ratio of source sam-
ples with score margin larger than parameter m, therefore,
when the parameters w+, w− are optimized to maximize
the margin between different classes, it is equivalent to find
the upper bound of Eq (12), and further optimization over
feature will minimize such upper bound, thus minimize the
domain gap.

C. Complexity Analysis
In this section, we briefly discuss how the complexity of

our query function is computed. Recall that in the setting of
SDM-AG, the query function is calculated as

Q̃(x) = Q(x) + λ ⟨∇fLm(x, y),∇fQm(x)⟩ (13)

For the simple margin sampling function Q(x), the oper-
ation is to get the maximum and second maximum score
over each class, and the operation is conducted on all sam-
ples, the complexity is O(NK). Suppose the weight of the
i-th class of linear classifier c(x) is denoted as wi ∈ RD,
the gradient of ∇fLm(x, y) can be calculated as

∇fLm(x, y) =
∑
i ̸=y

δ(m > wT
y f −wT

i f)(wi −wy) (14)

Similarly, the gradient of ∇fQ(x) can be calculated as

∇fQ(x) = p2∗w2∗ − p1∗w1∗ − (p2∗ − p1∗)

K∑
i=1

piwi

(15)

In terms of Eq (14) and Eq (15), for each sample, the gra-
dient is calculated as the form of summation over all classi-
fiers, therefore the complexity is O(NKD). Finally, after
calculating the Q̃(x), a sort function is applied, thus the to-
tal complexity of our query is O(NKD +N logN)

D. Visualization Results
Finally, we visualize the process of SDM at different

steps by t-SNE [9]. Figure 1 shows visualization results of
features for each data on target domain. For clarity, we only
visualize the feature distribution of samples from 9 classes.

Method Top-1 Acc.

ResNet 44.7±0.1

Random 78.1±0.6
UCN [5] 81.3±0.4
QBC [2] 80.5±0.3

AADA [8] 80.4±0.4
ADMA [4] 81.4±0.4

TQS [3] 83.1±0.4

SDM-AG (ours) 85.0 ± 0.3

Table 1. Classification accuracy (%) on the VisDA-2017 dataset
with the budget of 5% data.

The figure is plotted after each sampling step and selected
samples are emphasized by a black box surrounding it. Fi-
nally, the feature distribution after the whole training pro-
cess is also appended. From the Figure, we can observe that
SDM algorithm can properly select some hard and infor-
mative examples in the target domain, which roughly dis-
tributes outside the envelope of the clusters corresponding
to their class labels. Along with the sampling steps and
training afterward, the number of ambiguous points in the
t-SNE plane becomes less and the final feature distribution
is compact for a classifier to recognize.

E. Results on VisDA dataset
We further conduct experiments on the dataset of VisDA-

2017 [6], which involves larger scale of training samples.
The results are compared with other state-of-the-art ap-
proaches in Table 1. Based on Table 1, we can observe
that SDM-AG still outperforms state-of-the-art competitors
significantly. To be specific, our SDM-AG approach sur-
passes a naive Random sampling baseline by about 7% top-
1 accuracy. Compared with more advanced active domain
adaptation methods like ADMA [4] or TQS [3], SDM-AG
outperforms them by 3.6% and 1.9% respectively. These
comparison demonstrate that our designed ADA paradigm
can also cope with transfering scenarios with large scale of
data samples and is able to mine informative training data
from pools of unlabeled target data.
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