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1. Overview

In the supplementary material, we provide experimental
details and more evaluation results including visualizations.
We also provide our insights and discussions at the end.

2. Experiments
2.1. Dataset Details

There are two commonly used datasets including five
scenes in our work: ETH' [8] and UCY? [4]. Dataset
ETH consists of two scenes: ETH and HOTEL. Dataset
UCY consists of three scenes: UNIV, ZARA1, and ZARA2.
Each scene contains multiple walking pedestrians with dif-
ferent complex walking motions. We show examples of
each scene in Fig. 1 with one red dot as one person. Some
basic information of two datasets is shown in Tab. 1, ad-
ditional statistics of five scenes have been provided in the
main body.

2.2. Implementation Details

We compare our proposed model with total 5 trajectory
prediction baselines: Social-STGCNN [7], PECNet [6],
RSBG [11], SGCN [9], and Tra2Tra [13]. We imple-
mented these baselines with their provided codes: Social-
STGCNN 3, PECNet 4, SGCN °. We tried our best to repro-
duce the codes of RSBG and authors have shared the codes
of Tra2Tra with us.We also employ 4 domain adaptation
approaches: T-GNN+MMD [5] , -GNN+CORAL [10], T-
GNN+GFK [2], and T-GNN+UDA [12]. We implemented
these approaches based on the codes: MMD ©, CORAL',

Uhttp://www.vision.ee.ethz.ch/en/datasets/.
Zhttps://graphics.cs.ucy.ac.cy/research/downloads/crowd-data.
3https://github.com/abduallahmohamed/Social- STGCNN.
“https://github.com/HarshayuGirase/Human-Path-Prediction.
Shttps://github.com/shuaishiliu/SGCN.
Shttps://github.com/easezyc/deep-transfer-learning.
"https://github.com/VisionLearningGroup/CORAL.

GFK 8, UDA °.

2.3. Performance Study of a,,; ;

As mentioned in the main body, the value of a;; ; in
adjacency matrix A; is initialized as the distance between
pedestrian ¢ and j,

agi; = |0y — 0|2, (D

where || * |2 is the I3 distance, and o’ ; denotes the “relative
coordinates” (z'y,y';) of pedestrian i at time step ¢.

As it should be other possible definitions of ay;; ;, thus
we investigate and analysis different definitions of a; ; as
follows. Among these different functions, the key starting
point we follow is that a;; ; could be the function of the
relative coordinates of pedestrians ¢ and j. Average ADE
and FDE results are shown in Tab. 2.
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where € and c are both two small positive constants to ensure
the numerical stability. In real practice, it is really difficult
to have |0’y — 0'7||2 = 0 and we set e = ¢ = 0.001 though.

We can see from Tab. 2, the best performance comes
from ay; ; (Eq. (1)). Function aﬁc; achieves the second
best performance on ADE metric and a}; achieves the sec-
ond best performance on FDE metric, respectively.
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Figure 1. One frame example from five different scenes. All five scenes are from outdoor top-down view where multiple pedestrians
walking in different motions (each person is denoted with one red dot). It is obvious that UNIV is much more crowded than other four
scenes. In addition, ZARA1 and ZARA?2 share almost the same background.

Dataset Year Location Target Sensors

Description

Duration and tracks Annotations Sampling

ETH 2009 Outdoor People Camera/Top-down view

Two scenes
UCY 2007 Outdoor People Camera/Top-down view Three scenes

25 min, 650 tracks
16.5 min, over 700 tracks

Positions, velocities, groups, maps ~ @2.5Hz
Positions, gaze directions —

Table 1. Basic information ETH and UCY.

. | Performance
Variants oo
| ADE FDE

a{fi,”: 1.03 1.99

J
atP (0=2) | 117 2.10
al® (g =4) | 1.09 1.99
aith (0 =8) | 114 2.07

ajat, 1.08  1.92
asi; | 096 182

Table 2. Average performance of total 20 tasks on ADE/FDE met-
ric with different initializations for the adjacency matrix A;.

2.4. Results of Other DA Approaches

Tab. 3 shows evaluation results of total 20 tasks when
comparing with other domain adaptation approaches. For
model T-GNN+UDA, in which there is an adversarial loss
that measured by an extra domain classifier. One fully-
connected linear layer is employed as the classifier. In spe-
cific, this kind of models needs to minimize the adversarial
loss with respect to parameters of domain classifier, while
maximizing it with respect to the parameters of trajectory
predictor. Thus we use a a gradient reversal layer [ 1] for the
min-max optimization to unify the training procedure in a
single step. It can be observed that our proposed adaptive
learning module outperforms these domain adaptation ap-
proaches. This may show that our designed alignment loss
is more appropriate for adapting fine-grained individual-
level features in trajectory prediction task.

Shttps://github.com/jindongwang/transferlearning/tree/master/code/
traditional/GFK.
“https://github.com/GRAND-Lab/UDAGCN.

2.5. t-SNE Visualization

In this section, we visualize feature representations F{)
and F(y) of the target and source trajectory domain with t-
SNE [3] approach on of 4 tasks. Fig. 2 shows the visu-
alization examples where red and blue denote the source
and target trajectory features, respectively. The first row
are F{;) and F{;) without attention-based adaptive learning
module , which we denote as “w/o AAL” (corresponding to
the Variant T-GNN-V% in the main body). The second row
are with attention-based adaptive learning module, which
we denote as “w AAL”. Each dot represents the feature of
one pedestrian in the figure. Different from conventional t-
SNE visualizations that applied in classification task, there
is no specific “label” of each dot in our task. Therefore, the
cluster structure may not be clear in our task.

For task B—D and C—E, we can observe that features
get closer with our adaptive learning module, which vali-
dates that our proposed adaptation learning module is able
to alleviate the disparities across different trajectory do-
mains. In addition, the visualization of task B—D is not
significant and the corresponding quantitative results of task
is B—D lower than others (ADE: 2.25, FDE:4.04). For
task D—E and E—D, since D (ZARA1) and E (ZARA?2)
have similar scenes, we can observe from these two pairs of
figures: (1) features from source and target domains have
more overlaps, (2) features become more closer. It is con-
sistent with their corresponding quantitative results (D—E:
0.32/0.65, E—D: 0.34/0.72). It also validates the effective-
ness of our proposed adaptive learning module.

3. Discussion

Compare with general domain adaptation methods. We
delve into the domain-shift challenge in the task of pedes-
trian trajectory prediction in this paper. In image/video-



Method ‘

Performance

(Source2Target) | Ave

Metric
‘ A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D ‘

T-GNN+MMD [5] 153 139 114 1.19 299 1.18 239 149 108 0.62 071 042 1.02 089 0.68 038 0.89 099 0.74 041 | 1.11
T-GNN+CORAL [14] | 1.43 135 1.09 1.12 287 112 231 146 103 058 068 046 099 085 066 040 0.86 096 0.67 041 | 1.07
ADE T-GNN+GFK [2] 1.69 152 120 124 301 119 252 155 111 0.68 069 050 09 089 071 043 0.89 101 075 042|115
T-GNN+UDA [12] 141 132 098 123 292 120 243 142 112 064 062 048 091 081 0.69 035 091 098 070 0.39 | 1.07
T-GNN (Ours) 113 125 094 1.03 254 108 225 141 097 054 061 023 088 078 059 032 087 072 0.65 034 | 0.96
T-GNN+MMD [5] 263 265 198 224 486 215 463 269 216 125 152 099 220 1.8 139 075 203 184 146 082|211
T-GNN+CORAL [14] | 2.44 252 1.82 216 459 189 448 268 209 120 147 097 209 183 133 0.75 201 179 138 0.79 | 2.01
FDE T-GNN+GFK [2] 267 266 203 221 474 212 488 268 219 123 134 101 196 177 130 076 203 183 143 0.78 | 2.08
T-GNN+UDA [12] 259 261 194 225 481 213 485 263 219 129 142 103 203 175 137 073 208 180 145 0.76 |2.09
T-GNN (Ours) 218 225 178 1.84 415 1.82 4.04 253 191 112 130 0.87 192 146 125 0.65 1.86 145 128 0.72 | 1.82

Table 3. ADE/FDE results of our T-GNN model in comparison with existing domain adaptation approaches on 20 tasks. “2” represents from
source trajectory domain to target trajectory domain. A, B, C, D, and E denote ETH, HOTEL, UNIV, ZARA1, and ZARAZ2, respectively.
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Figure 2. Visualization results of the feature representations F{,y and F(; using t-SNE. The blue and red dots denote the source and target
feature representation, respectively. “w/o AAL” denotes that we disregard attention-based adaptive learning module(corresponding to the
Variant T-GNN-V2). “w/ AAL” denotes F{,y and F; are extracted from our proposed T-GNN model.

related classification tasks, domain adaptation (DA) is a
hot topic that aims to enable models to generate to novel
datasets with different sample distributions. In this study,
we expose the challenging domain-shift issue in future tra-
jectory prediction. We usually consider the trajectory as
two parts: observation and prediction. It is different from
conventional DA tasks where data is in the form of sample-
label pairs. Strictly speaking, in trajectory prediction task,
the prediction part is not exactly the “label” of the observa-
tion part. This essential difference brings in another inter-
esting finding that is worth exploring. In Fig. 2, the cluster
structure is not clear because there is no category of each
trajectory, which means there exists distribution overlap of
different trajectory domains. This kind of “overlap” may
be reason of the variance of different tasks. If this “over-

lap” problem as well as domain-shift problem can be well-
addressed simultaneously, trajectory prediction task would
be more practical and promising. On the other hand, the
observation and prediction parts of one trajectory are to-
tally consistent, thus these two parts may be able to swap
and supervise each other. We hope this perspective will in-
spire the research communities of considering the trajectory
prediction problem as well as domain shift issue.
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