

-Appendix-

Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection

1. Distant Function Selection

We evaluate the distant function with piece-wise step function $\mathbf{H}(\cdot)$ and sigmoid function $\mathbf{S}(\cdot)$, as shown in Fig. 1 and Fig. 2 respectively. The experimental results based on RetinaNet [1] are given in Table 1. We can observe that the performance gap between piece-wise step function $\mathbf{H}(\cdot)$ and sigmoid function $\mathbf{S}(\cdot)$ is only 0.1% in term of AP (37.4 v.s. 37.3). The results demonstrate that these two distance functions have no essential difference. In this paper, we use $\lambda = 8$ for all experiments.

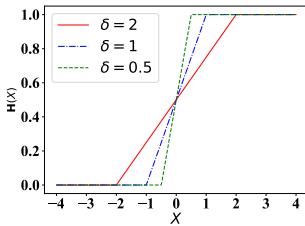


Figure 1. $\mathbf{H}(\cdot)$.

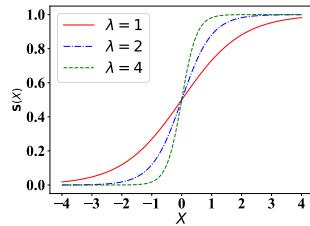


Figure 2. $\mathbf{S}(\cdot)$.

2. The Equivalence between Cross Entropy and Error-Driven Update

Here we find that if pair-wise error loss has the same gradients form as Eq.(7) in the main paper, then Error-Driven Update can be omitted for simplicity. To keep the numerator of pair-wise error gradients as the same as Eq.(7) in the main paper, we follow the common practice on cross entropy loss which adds a logistic function to sigmoid function. To start with, $\mathbf{S}(\cdot)$ is replaced with $\mathbf{CE}(\mathbf{S}(\cdot), 0)/\lambda$, which can be written as:

$$\begin{aligned} & \frac{1}{\lambda} \mathbf{CE}(\mathbf{S}(\hat{P}_v - \hat{P}_u), 0) \\ &= -\frac{1}{\lambda} ((1 - 0) \cdot \log(1 - \mathbf{S}(\hat{P}_v - \hat{P}_u)) + 0 \cdot (\mathbf{S}(\hat{P}_v - \hat{P}_u))) \\ &= -\frac{1}{\lambda} \log(1 - \mathbf{S}(\hat{P}_v - \hat{P}_u)) \end{aligned} \quad (1)$$

where the gradients of this distance function w.r.t $\mathbf{S}(\hat{P}_v - \hat{P}_u)$ can be calculated as:

$$\frac{\partial \mathbf{CE}(\mathbf{S}(\hat{P}_v - \hat{P}_u), 0)}{\lambda \partial \mathbf{S}(\hat{P}_v - \hat{P}_u)} = \frac{1}{\lambda(1 - \mathbf{S}(\hat{P}_v - \hat{P}_u))} \quad (2)$$

Table 1. Varying delta and lambda for distance function.

δ	AP	AP ₅₀	AP ₇₅	λ	AP	AP ₅₀	AP ₇₅
1	37.0	57.6	39.2	2	36.4	57.1	37.9
0.5	37.4	57.5	39.2	4	36.9	57.5	38.7
0.25	36.8	56.3	38.7	8	37.3	57.4	38.9
0.125	35.1	53.8	36.6	16	36.5	55.9	38.3

Since the gradient of $S(\hat{P}_v - \hat{P}_u)$ w.r.t \hat{P}_u can be written as:

$$\frac{\partial S(\hat{P}_v - \hat{P}_u)}{\partial \hat{P}_u} = -\lambda S(\hat{P}_v - \hat{P}_u)(1 - S(\hat{P}_v - \hat{P}_u)) \quad (3)$$

Therefore, we can have the the gradients of distance function w.r.t \hat{P}_u :

$$\begin{aligned} \frac{\partial \mathbf{CE}(S(\hat{P}_v - \hat{P}_u), 0)}{\lambda \partial \hat{P}_u} &= \frac{\partial \mathbf{CE}(S(\hat{P}_v - \hat{P}_u), 0)}{\lambda \partial S(\hat{P}_v - \hat{P}_u)} \cdot \frac{\partial S(\hat{P}_v - \hat{P}_u)}{\partial \hat{P}_u} \\ &= \frac{1}{\lambda(1 - S(\hat{P}_v - \hat{P}_u))} \cdot (-\lambda S(\hat{P}_v - \hat{P}_u)(1 - S(\hat{P}_v - \hat{P}_u))) \\ &= -S(\hat{P}_v - \hat{P}_u) \end{aligned} \quad (4)$$

Also, to keep the denominator term BC as the same as Eq. (7) in the main paper, we detach it from backpropagation and treat it as a constant. Note that, after employing these two tricks (*i.e.* cross entropy and detaching), we can have the same gradient of our pair-wise error (*i.e.*, $(-\sum_{v \in \mathcal{N}} S(\hat{P}_v - \hat{P}_u))/(rank^+(u) + rank^-(u))$) as AP loss, which theoretically leads to similar performances. The experimental results in Table 1 in the main paper also demonstrate that.

3. Threshold for Selecting Valid Negative Samples

In training processing, the number of negative samples N_{neg} is enormous and might overwhelm the loss. To solve this issue, we utilize a larger margin threshold T to filter out easy negative samples, as shown in Fig. 3. Specifically, we set a valid indicator for each pair-wise error to ignore easy pairs. Here we describe indicator function $\mathbb{1}_{uv}$ as:

$$\mathbb{1}_{uv} = \begin{cases} 1, & \hat{P}_v - \hat{P}_u > T \\ 0, & \text{else} \end{cases} \quad (5)$$

Table 2. Varying th for N_{neg} .

Balance Constant	T	AP	AP ₅₀	AP ₇₅
$rank^+(u) + rank^-(u)$	N/A	37.3	57.4	38.9
N_{neg}	0	36.8	57.1	38.8
N_{neg}	0.2	37.2	57.0	38.9
N_{neg}	0.25	37.3	56.7	39.4
N_{neg}	0.3	36.9	56.3	38.7
N_{neg}	0.5	35.2	53.3	37.1

Table 3. Varying for Q on FCOS [2].

Q	AP	AP ₅₀	AP ₇₅
10,000	37.6	54.3	40.0
50,000	39.7	57.3	42.3
100,000	40.0	58.1	42.4
200,000	40.0	58.1	42.6

Then N_{neg} is formulated as: $N_{neg} = \sum_{v \in \mathcal{N}} \mathbb{1}_{uv}$. We also study the impact of different thresholds on detection accuracy. As shown in Table 2, when $T = 0.25$, N_{neg} provides the same performance as $rank^+(u) + rank^-(u)$. This demonstrates the selection of these two balance constants is robust.

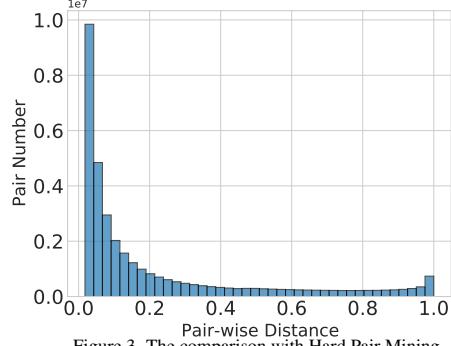


Figure 3. The comparison with Hard Pair Mining

4. Maximum Pair Number

In our experiments, the memory (11GB) of 2080TI GPU can be ran out because of the extreme large number of pair $\{\hat{P}_v, \hat{P}_u\}$. Thus we adopt a simple yet efficient trick; constricting the input number of pairs.

Here we denote the maximum input number of pairs by Q (*i.e.* the maximum length of \mathcal{A}_u for L_{APE}). Specifically, we manually choose the top Q predictions \hat{P}_v of negative samples in \mathcal{A}_u . We conduct experiments varying Q for APE loss on FCOS, and the results are shown in Table 3. When Q is greater than 100,000, the performance will no longer be improved. It can be concluded from the results that the promotion from large Q becomes minor as the gradually increasing of Q .

References

[1] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Focal loss for dense

object detection. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, pages 2117–2125, 2017. 1

[2] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object detection. In *Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, pages 9627–9636, 2019. 2