
-Appendix-
Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection

1. Distant Function Selection
We evaluate the distant function with piece-wise step

function H(·) and sigmoid function S(·), as shown in
Fig. 1 and Fig. 2 respectively. The experimental results
based on RetinaNet [1] are given in Table 1. We can
observe that the performance gap between piece-wise step
function H(·) and sigmoid function S(·) is only 0.1%
in term of AP (37.4 v.s. 37.3). The results demonstrate
that these two distance functions have no essential differ-
ence. In this paper, we use λ = 8 for all experiments.
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Figure 1. H(·).
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Figure 2. S(·).

2. The Equivalence between Cross Entropy
and Error-Driven Update

Here we find that if pair-wise error loss has the same gra-
dients form as Eq.(7) in the main paper, then Error-Driven
Update can be omitted for simplicity. To keep the numer-
ator of pair-wise error gradients as the same as Eq.(7) in
the main paper, we follow the common practice on cross
entropy loss which adds a logistic function to sigmoid func-
tion. To start with, S(·) is replaced with CE(S(·), 0)/λ,
which can be written as:
1

λ
CE(S(P̂v − P̂u), 0)

= − 1

λ
((1− 0) · log(1− S(P̂v − P̂u)) + 0 · (S(P̂v − P̂u)))

= − 1

λ
log(1− S(P̂v − P̂u))

(1)
where the gradients of this distance function w.r.t S(P̂v −
P̂u) can be calculated as:

∂CE(S(P̂v − P̂u), 0)

λ∂S(P̂v − P̂u)
=

1

λ(1− S(P̂v − P̂u))
(2)

Table 1. Varying delta and lambda for distance function.

δ AP AP50 AP75 λ AP AP50 AP75

1 37.0 57.6 39.2 2 36.4 57.1 37.9
0.5 37.4 57.5 39.2 4 36.9 57.5 38.7
0.25 36.8 56.3 38.7 8 37.3 57.4 38.9

0.125 35.1 53.8 36.6 16 36.5 55.9 38.3

Since the gradient of S(P̂v− P̂u) w.r.t P̂u can be written as:

∂S(P̂v − P̂u)

∂P̂u

= −λS(P̂v − P̂u)(1− S(P̂v − P̂u)) (3)

Therefore, we can have the the gradients of distance func-
tion w.r.t P̂u:

∂CE(S(P̂v − P̂u), 0)

λ∂P̂u

=
∂CE(S(P̂v − P̂u), 0)

λ∂S(P̂v − P̂u)
· ∂S(P̂v − P̂u)

∂P̂u

=
1

λ(1− S(P̂v − P̂u))
· (−λS(P̂v − P̂u)(1− S(P̂v − P̂u)))

= −S(P̂v − P̂u)
(4)

Also, to keep the denominator term BC as the same as
Eq. (7) in the main paper, we detach it from backprop-
agation and treat it as a constant. Note that, after em-
ploying these two tricks (i.e.cross entropy and detaching),
we can have the same gradient of our pair-wise error (i.e.,
(−
∑

v∈N S(P̂v − P̂u))/(rank
+(u) + rank−(u))) as AP

loss, which theoretically leads to similar performances. The
experimental results in Table 1 in the main paper also
demonstrate that.

3. Threshold for Selecting Valid Negative Sam-
ples

In training processing, the number of negative samples
Nneg is enormous and might overwhelm the loss. To solve
this issue, we utilize a larger margin threshold T to filter out
easy negative samples, as shown in Fig. 3. Specifically, we
set a valid indicator for each pair-wise error to ignore easy
pairs. Here we describe indicator function 1uv as:

1uv =

{
1, P̂v − P̂u > T

0, else
(5)

1



Table 2. Varying th for Nneg .

Balance Constant T AP AP50 AP75

rank+(u) + rank−(u) N/A 37.3 57.4 38.9
Nneg 0 36.8 57.1 38.8
Nneg 0.2 37.2 57.0 38.9
Nneg 0.25 37.3 56.7 39.4
Nneg 0.3 36.9 56.3 38.7
Nneg 0.5 35.2 53.3 37.1

Table 3. Varying for Q on FCOS [2].

Q AP AP50 AP75

10,000 37.6 54.3 40.0
50,000 39.7 57.3 42.3
100,000 40.0 58.1 42.4
200,000 40.0 58.1 42.6

Then Nneg is formulated as: Nneg =
∑

v∈N 1uv . We also
study the impact of different thresholds on detection accu-
racy. As shown in Table 2, when T = 0.25, Nneg pro-
vides the same performance as rank+(u)+rank−(u). This
demonstrates the selection of these two balance constants is
robust.
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Figure 3. The comparison with Hard Pair Mining

4. Maximum Pair Number
In our experiments, the memory (11GB) of 2080TI

GPU can be ran out because of the extreme large number of
pair

{
P̂v, P̂u

}
. Thus we adopt a simple yet efficient trick;

constricting the input number of pairs.
Here we denote the maximum input number of pairs by

Q (i.e.the maximum length of Au for LAPE). Specifically,
we manually choose the top Q predictions P̂v of negative
samples inAu. We conduct experiments varyingQ for APE
loss on FCOS, and the results are shown in Table. 3. When
Q is greater than 100, 000, the performance will no longer
be improved. It can be concluded from the results that the
promotion from large Q becomes minor as the gradually
increasing of Q.
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