

# Point Cloud Pre-training with Natural 3D Structures

## –Supplementary Material–

Ryosuke Yamada<sup>1\*</sup> Hirokatsu Kataoka<sup>1\*</sup> Naoya Chiba<sup>2</sup> Yukiyasu Domae<sup>1</sup> Tetsuya Ogata<sup>1,2</sup>

<sup>1</sup>National Institute of Advanced Industrial Science and Technology (AIST) <sup>2</sup>Waseda University

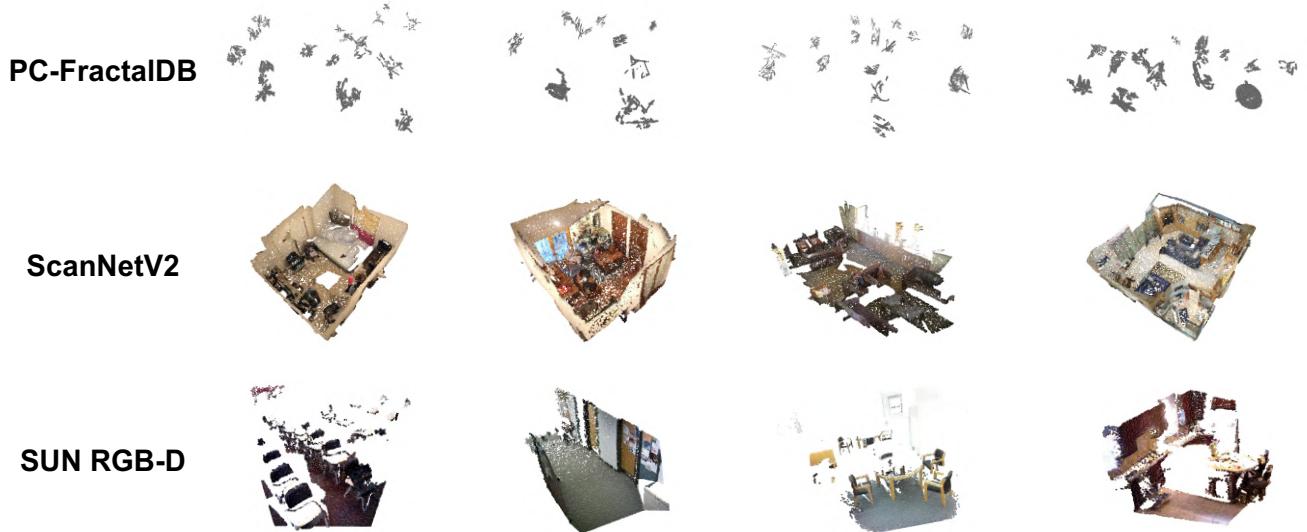



Figure 1. **Examples of 3D fractal scenes in the PC-FractalDB.** The first row is the visualization of automatically generated 3D fractal scenes. In the present study, we do not give RGB color to a 3D fractal model. Therefore a 3D fractal model has only geometry coordinates. The second row is the visualization of 3D scenes in ScanNetV2, and the third row is the visualization of 3D scenes in SUN RGB-D.

## Appendix

This supplemental document describes the details of our PC-FractalDB pre-trained model construction in Section A. We show more exploratory study on the variance threshold and the fraction of noise mixed in FractalNoiseMix in Section B. Detailed per-category results on 3D object detection benchmarks are shown in Section C. In addition, Qualitative results of 3D object detection in ScanNetV2 are presented in Section D.

### A. Visualization of the PC-FractalDB

In this section, we visualize the PC-FractalDB used for pre-training (see Fig. 1). We compare the samples with 3D scenes randomly sampled from ScanNetV2 [1] and SUN RGB-D [3]. A 3D fractal scene is generated from 3D fractal models only, so it has no background. It is possible to gen-

erate a background, but pre-training tends not to succeed. We consider that this because the number of categories has increased compared to the previous 3D datasets. Therefore, Pre-training 3D fractal scenes with a background, we think challenging task in the future.

### B. More exploratory study

**Effects of variance threshold (see Table 1).** This exploratory experiment attempts to clarify the optimal parameters for the variance threshold for defining fractal categories under the PC-FractalDB (1,000 categories, 500 instances, 10,000 scenes) condition. Table 1 showed that 0.15 is better than 0.10 in variance threshold  $\sigma$ . The higher the variance threshold, the more the 3D fractal model tends to have more shape patterns with fractal features, which means that the inter-category variance is significant, and the effect of pre-training is enhanced. Additionally, we found that

Table 1. The variance threshold comparisons for 3D fractal model creation. We also investigated 0.10, 0.15, and 0.20 in the w/ variance adjustment. However, the 0.20 score requires a large amount of time to find a fractal category.

| Variance threshold | ScanNetV2<br>mAP@0.25 | SUN RGB-D<br>mAP@0.25 |
|--------------------|-----------------------|-----------------------|
| w/ variance (0.10) | 59.2                  | 56.8                  |
| w/ variance (0.15) | <b>61.9</b>           | <b>59.0</b>           |
| w/ variance (0.20) | N/A                   | N/A                   |

Table 2. Comparisons in the fractal noise rate of FractalNoiseMix.

| Noise rate         | ScanNetV2<br>mAP@0.25 | SUN RGB-D<br>mAP@0.25 |
|--------------------|-----------------------|-----------------------|
| Fractal noise: 10% | 60.3                  | 57.0                  |
| Fractal noise: 20% | <b>61.9</b>           | <b>59.0</b>           |
| Fractal noise: 30% | 60.3                  | 58.8                  |
| Fractal noise: 40% | 60.7                  | 57.8                  |

the variance threshold of 0.20 requires a more significant amount of time to definite the fractal category. Therefore, we set the variance threshold  $\sigma$  as 0.15 in the present paper.

**Effects of FractalNoiseMix (see Table 2).** We need to augment a 3D fractal model in intra-category because there is only one 3D fractal model for each fractal category after defining a fractal category. Therefore, we augment a 3D fractal model in the present study by mixing another category as fractal noise. This experiment explores the most effective fractal noise ratio for FractalNoiseMix under the PC-FractalDB (1,000 categories, 500 instances, 10,000 scenes) condition. Table 2 showed that the fractal noise ratio of 20 % was the best parameter.

## C. Per-category result

This section shows the detailed average precision (AP) of each category when the IoU threshold is set to 0.25. as a supplement to the PC-FractalDB pre-training model benchmark. 3D object detection results for ScanNetV2 and SUN RGB-D are shown in Table 3 and Table 4.

As shown in Table 3 and Table 4, we show that our proposed pre-training with the PC-FractalDB can improve the fine-tuning in the 3D detection task with the point cloud. In particular, when the backbone network is PointNet++ $\times 2$ , we confirm the improvement of the average accuracy from RandomRooms in 13 out of 18 categories in ScanNetV2. In addition, we confirm the improvement of the average accuracy from RandomRooms in 7 out of 11 categories in SUN RGB-D.

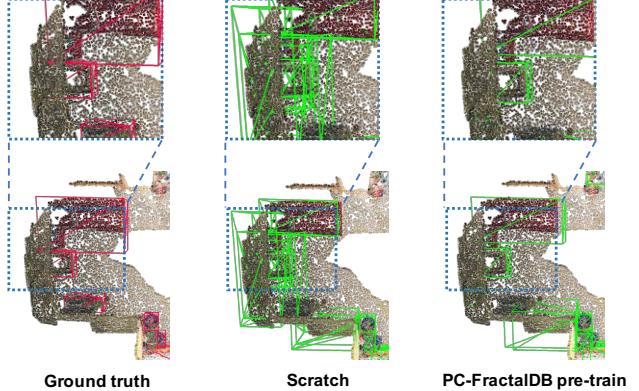



Figure 2. In the figures, we compare point cloud fractal database pre-trained VoteNet with ground truth and VoteNet training from scratch.

## D. Qualitative result

In this section, we visualize the detection results of the baseline VoteNet trained from scratch and the pre-trained model using our method on ScanNetV2. As shown in Fig. 2, the PC-FractalDB pre-trained model results in fewer false positives, and the 3D bounding boxes estimated tend to be close to the ground truth than scratch.

## References

- [1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 5828–5839, 2017. 1
- [2] Yongming Rao, Benlin Liu, Yi Wei, Jiwen Lu, Cho-Jui Hsieh, and Jie Zhou. Randomrooms: Unsupervised pre-training from synthetic shapes and randomized layouts for 3d object detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 3283–3292, 2021. 3
- [3] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understanding benchmark suite. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 567–576, 2015. 1

Table 3. 3D object detection on ScanNetV2.

|                                       | cab  | bed  | chair | sofa | tabl | door | wind | bkshf | pic  | cntr | desk | curt | frdg | showr | toil | sink | bath | ofurn | mAP@0.25    |
|---------------------------------------|------|------|-------|------|------|------|------|-------|------|------|------|------|------|-------|------|------|------|-------|-------------|
| Scratch (PointNet++)                  | 36.3 | 87.4 | 88.3  | 86.4 | 62.1 | 42.1 | 36.1 | 49.4  | 4.7  | 56.3 | 66.0 | 46.5 | 48.4 | 60.1  | 95.7 | 48.3 | 89.4 | 37.8  | 57.9        |
| Scratch (SR-UNet)                     | 34.0 | 76.5 | 89.1  | 83.9 | 57.2 | 46.7 | 35.1 | 45.4  | 8.0  | 57.4 | 65.9 | 51.1 | 44.1 | 56.7  | 96.3 | 51.5 | 81.5 | 45.8  | 57.0        |
| RandomRooms (PointNet++) [2]          | 37.2 | 87.4 | 88.9  | 89.8 | 61.9 | 45.3 | 42.6 | 53.5  | 7.8  | 51.7 | 67.2 | 53.5 | 54.0 | 66.4  | 96.8 | 62.6 | 92.0 | 43.6  | 61.3        |
| PC-FractalDB (PointNet++)             | 38.0 | 88.1 | 88.3  | 88.8 | 60.7 | 51.9 | 39.3 | 58.5  | 9.3  | 57.2 | 68.1 | 56.7 | 51.7 | 63.0  | 97.1 | 60.1 | 92.5 | 44.1  | <b>61.9</b> |
| PC-FractalDB (PointNet++ $\times 2$ ) | 40.4 | 88.1 | 88.4  | 89.1 | 61.6 | 53.1 | 43.1 | 59.5  | 15.6 | 54.4 | 68.7 | 53.8 | 54.8 | 74.7  | 99.6 | 57.3 | 92.5 | 46.2  | <b>63.4</b> |
| PC-FractalDB (SR-UNet)                | 29.1 | 82.7 | 89.8  | 83.7 | 58.5 | 48.6 | 38.6 | 54.2  | 7.7  | 61.1 | 69.4 | 50.8 | 46.2 | 62.5  | 95.0 | 57.3 | 84.9 | 48.6  | 59.4        |

Table 4. 3D object detection on SUN RGB-D.

|                                       | bathtub | bed  | bookshelf | chair | desk | dresser | night stand | sofa | table | toilet | mAP@0.25    |
|---------------------------------------|---------|------|-----------|-------|------|---------|-------------|------|-------|--------|-------------|
| Scratch (PointNet++)                  | 77.6    | 83.6 | 28.6      | 73.7  | 23.6 | 25.5    | 57.9        | 64.4 | 48.9  | 90.1   | 57.4        |
| Scratch (SR-UNet)                     | 69.2    | 81.7 | 29.7      | 74.7  | 22.7 | 24.2    | 57.5        | 63.1 | 48.8  | 89.3   | 56.1        |
| RandomRooms (PointNet++) [2]          | 76.2    | 83.5 | 29.2      | 76.7  | 25.1 | 33.2    | 64.2        | 63.8 | 49.0  | 91.2   | 59.2        |
| PC-FractalDB (PointNet++)             | 78.4    | 85.3 | 32.8      | 74.6  | 26.3 | 33.5    | 63.8        | 62.9 | 50.3  | 87.3   | <b>59.4</b> |
| PC-FractalDB (PointNet++ $\times 2$ ) | 79.8    | 83.6 | 32.1      | 75.4  | 28.5 | 30.2    | 67.3        | 64.4 | 50.8  | 88.9   | <b>60.2</b> |
| PC-FractalDB (SR-UNet)                | 71.4    | 82.3 | 30.7      | 75.0  | 24.7 | 26.4    | 58.4        | 64.3 | 48.3  | 89.5   | 57.1        |