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Abstract

In this supplementary document, we first give a detailed
description of the ambiguity measure, model architectures,
and training/testing statistics in Appendix A. Then we show
more visual comparisons between our method and previous
methods for scans of both high and low ambiguity in Ap-
pendix B. Lastly, we will give more analysis on our method
in Appendix C, such as a discussion of limitations. The code
of our model is also included in the supplementary material.

A. Implementation Details
A.1. Ambiguity measure for partial point cloud

The ambiguity for a partial point cloud measures the va-
riety of its potential complete shapes. However, the direct
measurement for ambiguity is difficult, if not impossible.
In contrast, the incompleteness of a partial cloud toward its
complete shape is relatively easy to compute. Although it
can not fully reflect ambiguity (e.g., a top scan of a table
as incomplete as a bottom scan could have a much greater
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Figure 1. Viewing direction greatly influences the scan ambiguity.
Our proposed scores for 70 scans of a teapot are shown in sorted
order, with examples marked with their position on the curve. The
example contains the scans (in gold insets) and complete shape
color-coded scores for each point in it.

ambiguity), the ambiguity is still strongly correlated.
Hence, we seek to find a metric

on the incompleteness of such a

point cloud to indicate its ambi-

guity. Intuitively, we could use

metrics like F-score [12] to mea- = oo,
sure the ratio of the approximate

partial surface area toward the

complete area. But as indicated in the inset figure, such
measures will fail to differentiate the coverage difference of
the partial cloud (red dots) to the complete one (in blue).
Instead, we propose to use a metric based on Chamfer-Lo,
which goes larger as the partial point cloud misses more
global structure. Since the partial to complete distance is
always negligible, we can only calculate the complete to
partial distance. And to compare the ambiguity of scans on
different shapes, we normalize the distance of a point ac-
cording to its farthest distance in the complete shape. More
specifically, we define the metric Amb evaluating the ambi-
guity of scan C given the complete point cloud as B as:

Amb(B7 C) — %Exelg miNyec ||.’I} B y”
Where B is the number of points in the complete cloud.
We sample 70 views for each shape, 64 of which are
evenly sampled from the view sphere (via Fibonacci sam-
pling), and the rest are the six orthogonal views. Then we
sort these views according to the score. In Fig. 1, we use a
teapot as an example to show the score distribution of these
70 scans. For scans with low ambiguity scores, the under-
lying shape’s global structure is either captured or is clearly
indicated by the captured shape salient features. For ex-
ample, the scan covering the teapot’s mouth, handle, and
body can be completed easily. However, it would be more
difficult to infer the complete shape when the score is high
since it may have different global structures, and a single
explanation is not satisfactory. As shown in the main paper,
our method can better handle such scans than existing shape
completion methods.

A.2. Architectures

We show the detailed architecture of VQDIF and Shape-
Former in Figs. 2 and 3, respectively. and the parameters of
their sub-modules are listed in Tab. 1
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VQDIF. As shown in Figure 2, VQDIF is an encoder-
decoder architecture, where the encoder maps an input point
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Figure 2. The architecture of VQDIF. The complete point cloud P is encoded to a feature grid and down-sampled into a lower resolution
one. Its non-empty features are then flattened and quantized to form the VQDIF sequence which is then projected back to a feature grid,
up-sampled and sent to an implicit decoder, from which the occupancy grid 7, of probes 7x and the reconstruction M can be obtained.
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Figure 3. An extended view of ShapeFormer. Different from the
figure in the main paper, we show the inside of each Transformer
module. The input embeddings are obtained by additively mixing
the location and value embeddings. And the output head converts
the output embedding into categorical distributions.

Layer Name Notes Input Size

VQDIF

Local Pooled Pointnet N x3

Downsampler
ConvLayer k2s2p0 64 x 64 x 64 x 32
ConvLayer kls1p0 32 x 32 x 32 x 64
ConvLayer k2s2p0 64 x 64 x 64 x 32
ConvLayer k1s1p0 32 x 32 x 32 x 64

Quantizer 16 x 16 x 16 x 128

UNet3D 16 x 16 x 16 x 128

Upsampler 16 x 16 x 16 x 128
Scaling nearest mode 16 x 16 x 16 x 128
ConvLayer k3slpl 32 x 32 x 32 x 128
ConvLayer k3slpl 32 x 32 x 32 x 64
Scaling nearest mode 32 x 32 x 32 x 64
ConvLayer k3slpl 64 x 64 x 64 x 64
ConvLayer k3slpl 64 x 64 x 64 x 32

Upsampler Output 64 x 64 x 64 x 32

Implicit Decoder 1283 x 3

Implicit Decoder Output 1283 x 1

ShapeFormer

Embedding Blocks #4AM K x2

Coordinate Transformer Blocks x20 #251M K x 1024

Coordinate Output Heads #AM K x 4097

Embedding Blocks #4AM K x2

Value Transformer Blocks x4 #50M K x 1024

Value Output Heads #4M K x 4097

Total params #340M

Trainable params #323M

Table 1. The detailed architecture information of our method. N
is the point size. For both VQDIF and ShapeFormer, we list the in-
put size of their components. For convolutional neural networks,
the "k", "s", "p" stands for kernel size, stride, and padding, re-
spectlvely. Also "ConvLayer" denotes the composition of CNN +
ReLU + GroupNorm. We also list the number of parameters for
each component and indicate them with #. The sequence length is

denoted by K, with a maximum of 812.



cloud to a discrete sequence representation S, while the
decoder maps such a sequence to a deep implicit function
f(x). Unlike the main paper’s completion pipeline, both the
encoder and decoder only take complete input during train-
ing. The input to the encoder is a point cloud P € RV *3
representing the dense sampling of a shape or its partial ob-
servation. During the training phase, we use complete dense
clouds with N = 32768 points to train VQDIF to capture
local geometric details in the input. At test time, we use
the trained encoder to directly encode partial point clouds,
which may be sparse or dense.

The encoder first processes the input cloud with a local
pooled PointNet [ ] to obtain a feature grid. Similar to prior
work [10], the local pooled PointNet aggregates features
within a grid cell in contrast to the original PointNet, where
all point features are pooled together to obtain a global fea-
ture. Specifically, we use a grid of resolution 64 with a
feature size of 32.

Next, to reduce the number of local features, the high-
resolution feature grid is down-sampled to lower resolution
R, using several consecutive strided convolution blocks. As
shown in Tab. 1, the parameters of these blocks are carefully
set to have the least receptive field since a large receptive
field lets each grid feature cover a larger region, reducing
the sparsity of the representation. We can then extract the
non-empty features by directly masking the encoded fea-
ture grid with the voxelized input point cloud (resolution
R) thanks to the minimum receptive field. After flattening
and quantizing the features (see the main paper), we get the
2-tuple sequence representation directly sent to the decoder.
Note that we also save the "empty" feature to project the se-
quence back to the feature grid in the decoder.

The decoder consists of a 3D U-Net [4], an up-sampler,
and an implicit decoder. It first projects the quantized sparse
sequence back to a 3D feature grid, which serves as the in-
put for the 3D U-Net. In contrast to the encoder, the decoder
is designed to have a large receptive field. This is because,
in order for the implicit decoder to infer whether a probe lies
inside or outside of the shape, we need global knowledge.
This is in alignment with prior works [6, 10]. More specifi-
cally, we use a 3-step U-Net to increase the receptive field,
which integrates both local and global information. The up-
sampler has the same number of scaling stages as the down-
sampler, but it has a larger receptive field by design. Lastly,
similarly to prior work [10], the implicit decoder consists of
multiple ResNet blocks. It takes querying probe points Tx
and predicts their occupancy probability 7.

ShapeFormer. In Fig. 3, we show the detailed architec-
ture of ShapeFormer. The input to the ShapeFormer con-
sists of the concatenated sequence of Sp and S¢. Since
these sequences both have variable lengths, we append an
end-token ([END]) to each sequence to indicate when the

sequence terminates. Next, as in prior works [5,9], all these
indices are turned into learnable embeddings and are addi-
tively combined as the input embedding for ShapeFormer.

The main components of ShapeFormer are two causally-
masked transformers, which consist of multiple decoder-
only transformer blocks [11]. The first transformer learns
to predict the coordinate of the next tuple, conditioned on
previous tuples, while the second one learns to predict the
value of the next element conditioned on previous tuples
and the (predicted) coordinate index of the next element.
Thus, the output feature of the first transformer is additively
mixed with the input embedding of the second transformer
delivering the encoded sequence information.

Each transformer is followed by an output head, which
converts the feature produced by the transformer into a cate-
gorical distribution of the next sequence element. Both out-
put heads consist of two fully connected layers, followed
by a softmax layer to produce categorical conditional distri-
butions for each of the sequence elements: {(p.,, ;) } <,
Note that this essentially shifts the complete sequence to
the right by one element. For training, we also empiri-
cally find randomly masking out the partial sequence will
improve generalization.

A.3. Details on training and sampling

We use Adam optimizer for training both VQDIF and
ShapeFormer, and we set the learning rate as le — 4 for
VQDIF and le — 5 for ShapeFormer. We use step decay for
VQDIF with step size equal to 10 and 3 = .9 and do not
apply learning rate scheduling for ShapeFormer. We train
our network on a deep learning server with Intel Xeon CPU
E5-2680 v4 CPU*56 and 256GB memory with 10 Nvidia
Quadro P6000 graphics cards with a GPU memory size of
24GB. It takes 30 hours for our model to converge on our
virtual scan dataset and 8 hours on the PartNet dataset. For
D-Faust, the converging time is 16 hours. For sampling, we
can obtain a single sample sequence in roughly 20 seconds,
and we can also sample 24 sequences in parallel in 5 min-
utes.

B. More comparisons

We show more visual comparisons between our method
and prior state-of-the-art methods in Figs. 4 to 6. Figs. 4
and 5 illustrates results on high-ambiguity scans, In these
examples, we can see the averaging effect of the determinis-
tic methods (See the scattering effect in ambiguous regions
of the completions of PoinTr [14]). Our method produces
significantly better results in terms of quality and diversity.

Also, we demonstrate our method can also achieve com-
petitive accuracy for low-ambiguity scans in Fig. 6. Since
there is limited ambiguity for such scans and the goal is to
achieve accuracy toward ground truth, we put the ground
truth in the first row and only sample 1 completion for each
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Figure 4. More comparisons on high ambiguity scans of ShapeNet objects.
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Figure 5. More comparisons on high ambiguity scans of ShapeNet objects.
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Figure 6. More comparisons on low ambiguity scans of ShapeNet objects. Ours=top-.4 sampling, Ours*=top-.0 sampling (best sampling).



of our sampling strategies (Ours: top-.4 sampling, Ours*:
top-.0, e.g., best sampling). Also, we only compare state-of-
the-art deterministic methods: ConvONet [10], IF-Net [2],
and PoinTr [14] in these examples. As we can see, even
the scans cover most areas of the ground truth shape; prior
works can still produce unsatisfactory results for unseen re-
gions. In contrast, our method can always produce more ac-
curate, high-quality completions. Moreover, since Ours* al-
ways picks the coordinate and value indices with the highest
probability, it often produces slightly more accurate shapes.

C. More analysis

Discussion of Limitation. ShapeFormer inherits the typ-
ical limitations of transformer-based autoregressive mod-
els. Mainly, the representation length cannot be too long,
and thus the method currently can only use VQDIF with
R = 16, which may fail to complete and reconstruct shapes
with intricate structures; an example is shown in Figure 7.
Another related limitation is the sampling speed, which pre-
vents interactive applications.

Figure 7. An example of a shape completion failure case of Shape-
Former. The intricate details present in the input (second from left)
are not preserved in the completions (gray shapes). The leftmost
image shows the ground truth shape.

There are two research avenues to alleviate these prob-
lems: (i) Investigating more efficient attention mechanisms
to reduce the transformer’s quadratic complexity in the
sequence length K to O(K+VK) [7] or even O(K) [3].
(ii) Designing an adaptive quantization scheme for the point
clouds, which enables Transformers to focus dependencies
on a lower local level while using higher-level features for
faraway regions. (iii) Adopt advanced sampling techniques
for autoregressive models such as parallel sampling [8].

Moreover, since we generate sequences of complete
shapes from scratch, our results may slightly alter the in-
put geometry to overcome the potential sparsity and noise.
Besides using higher resolution quantized features to obtain
more accurate generation, another possible improvement to
this issue is to include high-resolution features of the input
in the decoding procedure as in a recent image inpainting
technique [13].
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