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1. Proof of Equations

Proof of Equation (4).
We can prove the Equation (4) utilizing the log-sum-exp

inequalities [12]. We define the Log-Sum-Exp function as
LSE(.), then we can have the following bounds:

max{x1,x2, · · ·,xn} ≤ LSE(x1,x2, · · ·,xn)
≤ max{x1,x2, · · ·,xn}+ log(n)

(1)
The inequality holds if and only if n = 1. We can make

the bound tighter by multiplying a scale factor α. Then:

max{x1,x2, · · ·,xn} ≤
1

α
LSE(αx1, αx2, · · ·, αxn)

≤ max{x1,x2, · · ·,xn}+
log(n)

α
(2)

When α → ∞, then equation holds. Then as for equa-
tion 4, we have:

LCL = lim
α→∞

1

α
− log

exp(αsp)

exp(αsp) +
∑α
j=1 exp(αs

j
n)

= lim
α→∞

1

α
log(1 +

α∑
j=1

exp(αsjn − sp))

≥ lim
α→∞

log(

α∑
j=1

exp(sjn − sp))

= lim
α→∞

1

α
LSE(αsjn − αsp)

= max[sjn − sp]

(3)

Proof of Equation (5).
If si is the positive score, then the derivative can be given

by:

∂L

si
= −

∑C
j=1 exp(sj)

exp(si)
·

exp(si)
∑C
j=1 exp(sj)− (exp(si))

2

(
∑C
j=1 exp(sj))

2

= −
∑C
j=1 exp(sj)− exp(si)∑C

j=1 exp(sj)

=
exp(si)∑C
j=1 exp(sj)

− 1

= pi − 1.

(4)

If sj is the negative score, the the derivative can be given
by:

∂L

sj
= −

∑C
j=1 exp(sj)

exp(si)

− exp(sj) exp(si)

(
∑C
j=1 exp(sj))

2

= −
− exp(sj)∑C
j=1 exp(sj)

=
exp(sj)∑C
j=1 exp(sj)

= pj .

(5)

Since
∑
pi = 1, assume we have B pairs, then we have∑B−1

j=1

∂L

sj
= |

∂L

si
|.

Intution behind Equation (1). We also provide the in-
tuition behind Equation 1 here. The positive alignment loss
function is not constructed casually. Based on the proof of
Equation (4), when the scale factor α→∞ we can have:

Lpos = lim
α→∞

1

α
log(1 +

∑
exp(−z>i zj · α))

≥ lim
α→∞

1

α
log(

∑
exp(−z>i zj · α))

= min[z>i zj ]

(6)

where zi and zj represent the different samples that are
sampled from the same class. In contrastive-based loss
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Figure 1. Comparison on different target domain on OfficeHome Benchmark
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Figure 2. Comparsion on different target domain on PACS Benchmark

function, we attempt to conduct hard pair mining on con-
trolling the scale factor by finding the most difficult negative
pair. Similarly, we also want to conduct hard pair mining on
positive pair. The above positive alignment loss provides
one solution for hard positive pair mining.

2. More Experimental Analysis

Our code is mainly built on the open-source code of
SWAD [4] including its training strategy.

Optimization Details. The network is optimized by
Adam optimizer with a learning rate of 5e-5. All the in-
put images are resized to 224 × 224. For all the datasets
except domainnet, we train the model for 5000 steps. For
the domainnet dataset, we train the model for 15000 steps.
Note that this training setting is akin to the SWAD. We also
follow the same HP searching strategy as SWAD did.

Data Augmentation Details. Data augmentation plays
a vital role in domain generalization as a typical regular-
ization method. Though there are many data augmentation
methods such as Jigen [3] show a promising result on DG
task. For a fair comparison, we only use the data augmenta-
tions contained in SWAD. We follow the data augmentation
technicals in SWAD. We randomly cropped the images to
retain between 70% and 100%. We randomly applied hori-
zontal flipping and random color jittering with a magnitude
of 0.3. We also randomly apply a Grayscale on the original
image with 10% probabilities.

More Experimental Results. We also validate our al-
gorithm on VLCS [5], which contains about 11K images
with four domains. As shown in Table 1, our method does
not surpass the state-of-the-art methods. We also report the
reproduced SWAD results on VLCS (i.e., SWAD†). Our
approach surpasses the reproduced results.

Table 1. Comparison with state-of-the-art methods on VLCS
benchmark with ResNet-50 imagenet-pretrained model

Algorithm C L S V Avg

GroupDRO [14] 97.3 ±0.3 63.4 ±0.9 69.5 ±0.8 76.7 ±0.7 76.7
RSC [7] 97.9 62.5 72.3 75.6 77.1

MLDG [9] 97.4 65.2 71.0 75.3 77.2
MTL [2] 97.8 64.3 71.5 75.3 77.2

ERM [16] 98.0 64.7 71.4 75.2 77.3
I-Mixup [17–19] 98.3 64.8 72.1 74.3 77.4

ERM [16] 97.7 64.3 73.4 74.6 77.5
MMD [10] 97.7 64.0 72.8 75.3 77.5

CDANN [10] 97.1 65.1 70.7 77.1 77.5
ARM [20] 98.7 63.6 71.3 76.7 77.6

SagNet [11] 97.9 64.5 71.4 77.5 77.8
Mixstyle [21] 98.6 64.5 72.6 75.7 77.9

VREx [8] 98.4 64.4 74.1 76.2 78.3
IRM [1] 98.6 64.9 73.4 77.3 78.6

DANN [6] 99.0 65.1 73.1 77.2 78.6
CORAL [15] 98.3 66.1 73.4 77.5 78.8

SWAD [4] 98.8 63.3 75.3 79.2 79.1
SWAD† 98.41 63.58 72.01 74.49 77.12

Ours 99.02 63.57 73.75 75.58 77.98

Convergence Speed. We also conduct an experiment on
analyzing the convergence speed of our method. We use
OfficeHome and PACS datasets and test the convergence
speed with a ResNet18 backbone with imagenet-pretrained
model. We do not use SWA mechanism in our implementa-
tion.

As shown in Figures 1 and 2, in all domain generaliza-
tion settings, the proposed PCL loss can converge faster
than the softmax CE loss and achieve a better model per-
formance.

3. Visualization results

We also use deep neural network interpretability meth-
ods in [13] to explain the our model’s generalization abil-
ity, as shown in Figures 3 to 6, the Art, Clipart, Prod-
uct and Real-World indicates the target domain correspond-
ingly. Our model can capture the important part of the input



sample.
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(a) Art

Figure 3. Visualization results on OfficeHome Art



(b) Clipart
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Figure 4. Visualization results on OfficeHome Clipart
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(c) Product

Figure 5. Visualization results on OfficeHome Product



(d) Real_World
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Figure 6. Visualization results on OfficeHome Real-World


