GIFS: Neural Implicit Function for General Shape Representation
Supplementary Materials

In this supplementary material, we provide additional
details of the implementation and more visualization re-
sults.

A. Implementation Details

Padding Issue. In the original IF-Net implementation, the
size of the 3D encoding grid is the same as the normalized
mesh. In experiments, we find that the lack of padding is
prone to generate artifacts on the boundaries, which signif-
icantly degrades the reconstruction accuracy. In our imple-
mentation, the size of the normalized mesh is 0.9 of the en-
coding grid. Moreover, in 3D convolution, we find that the
zero padding outperforms the border padding used in IF-
Net.

Training procedure. During training, the number of train-
ing pairs is 50000 per instance and the batch size is 8. We
employ the Adam optimizer with a learning rate of 1 x 10~
The watertight and the general shape experiments take 200
and 300 epochs respectively.

Mesh refinement. The initial mesh produced by our
adapted Marching Cubes is further refined by minimizing
the UDF values on the mesh surface. We employ an RM-
Sprop optimizer with an initial learning rate of 2 x 10~%.
In each iteration, a random point is sampled on each face of
the mesh. Given a trained GIFS model, we take the sampled
points as input, query, and minimize their UDF values. The
total number of iterations is 30.

B. Surface Extraction Algorithm

In this section, we provide the detailed surface extraction
algorithm flow. Our algorithm consists of three steps: (i)
Locate cubes that intersect the surface in a coarse-to-fine
paradigm; (ii) Generate mesh triangles in final intersecting
cubes with our adapted Marching Cubes; (iii) Refine mesh
with the UDF branch.

First, we introduce our coarse-to-fine intersecting cubes
localization algorithm. In our implementation, the initial
resolution of the grid is 20 and is subdivided 3 times. The
final resolution is 160%. We show the detailed process in
Algorithm 1. Among the inputs of the algorithm, the initial
intersecting indices I are integer indices of all 20® cubes,

Algorithm 1 Locate intersecting cubes

Input: Initial intersecting indices I € ZS‘ N %3 initial cube size
S0, point embedding layer go,, UDF layer hg,, intersecting
threshold 7, total number of stages 7'

Output: Intersecting indices I € Zg " *?

1: for stage t € range(T) do

2: Cube size s < s0/2"

3: New empty intersecting indices I,, + {}
4: for intersecting index ¢ € I do

5: Center of the intersecting cube p,_ +— st

6 Predicted UDF of the center w < ho, (g0, (P.))

7 if u < s7 then

8 Subdivide current cube and add new indices to I ,,

9

end if
10: end for
11: I+1,
12: end for

Algorithm 2 Adapted Marching Cubes

Input: Intersecting indices I € Zg MX3 cube size s, point em-
bedding layer gg, , decoder fg,, all possible assignments A
Output: Mesh M = (V| F)
1: Empty mesh M «+ {}

2: for intersecting index 7 € I do

3 Calculate 8 vertices of the intersecting cube using ¢ and s.

4: Predict 28 binary flags between 8 vertices using Eq.3

5: Minimal cost lynirn < 400

6 for possible assignment a € A do

7 Calculate cost [for assignment a using Eq.8

8 if | < lyin then

9: lmin <1, @min < a

10: end if

11: end for

12: Query the vertices and faces in the lookup table according
to assignment @, and add to M

13: end for

the initial cube size sy = 1.0/20 = 0.05, the total number
of stages 7' = 3 and the intersecting threshold 7 = 2.

After obtaining intersecting indices I, the next step is to
generate triangles using our adapted Marching Cubes. In
each cube, we first use our model to predict all binary flags
between 8§ vertices, then assign binary labels (0/1) to 8 ver-

Ours Ours (Cut) Ours (Cut)

Figure 1. Reconstruction results of multi-layer shapes. Our method can reconstruct internal structures of various shapes.

Figure 2. Reconstruction results of non-watertight shapes. The non-watertight shapes are difficult for traditional neural implicit func-
tions to reconstruct.

tices based on the binary flags, and finally generate trian- possible binary assignments for 8 vertices.
gles with the lookup table provided by the original March- nall lize th h fine th h
ing Cubes. We show the detailed process in Algorithm 2. Finally, we utilize the UDF branch to refine the mes

Among the inputs of the algorithm, A = {0,1}8 is the all M = (V,F) We samPlg p oints on each face and re-
fine mesh vertices by minimizing the UDF values of sam-

Algorithm 3 Mesh refinement

Input: Mesh M = (V, F), point embedding layer go,, UDF
layer hg,, number of iteration N
Output: Refined mesh M = (V, F)
1: for iteration n € range(N) do
2: Sample points P from each face, each sampled point is a
linear combination of 3 mesh vertices
3: Optimize mesh vertices V' by minimizing Eq.9
4: end for

pled points. We show the detailed process in Algorithm 3.
Among inputs, the number of iteration NV is 30.

C. Qualitative Evaluation

Reconstruction results of multi-layer shapes and non-
watertight shapes are shown in Figure 1 and Figure 2.

