
GIFS: Neural Implicit Function for General Shape Representation
Supplementary Materials

In this supplementary material, we provide additional
details of the implementation and more visualization re-
sults.

A. Implementation Details
Padding Issue. In the original IF-Net implementation, the
size of the 3D encoding grid is the same as the normalized
mesh. In experiments, we find that the lack of padding is
prone to generate artifacts on the boundaries, which signif-
icantly degrades the reconstruction accuracy. In our imple-
mentation, the size of the normalized mesh is 0.9 of the en-
coding grid. Moreover, in 3D convolution, we find that the
zero padding outperforms the border padding used in IF-
Net.
Training procedure. During training, the number of train-
ing pairs is 50000 per instance and the batch size is 8. We
employ the Adam optimizer with a learning rate of 1×10−4

The watertight and the general shape experiments take 200
and 300 epochs respectively.
Mesh refinement. The initial mesh produced by our
adapted Marching Cubes is further refined by minimizing
the UDF values on the mesh surface. We employ an RM-
Sprop optimizer with an initial learning rate of 2 × 10−4.
In each iteration, a random point is sampled on each face of
the mesh. Given a trained GIFS model, we take the sampled
points as input, query, and minimize their UDF values. The
total number of iterations is 30.

B. Surface Extraction Algorithm
In this section, we provide the detailed surface extraction

algorithm flow. Our algorithm consists of three steps: (i)
Locate cubes that intersect the surface in a coarse-to-fine
paradigm; (ii) Generate mesh triangles in final intersecting
cubes with our adapted Marching Cubes; (iii) Refine mesh
with the UDF branch.

First, we introduce our coarse-to-fine intersecting cubes
localization algorithm. In our implementation, the initial
resolution of the grid is 203 and is subdivided 3 times. The
final resolution is 1603. We show the detailed process in
Algorithm 1. Among the inputs of the algorithm, the initial
intersecting indices I are integer indices of all 203 cubes,

Algorithm 1 Locate intersecting cubes

Input: Initial intersecting indices I ∈ Z+N×3
0 , initial cube size

s0, point embedding layer gθ1 , UDF layer hθ3 , intersecting
threshold τ , total number of stages T .

Output: Intersecting indices I ∈ Z+M×3
0

1: for stage t ∈ range(T ) do
2: Cube size s←− s0/2

t

3: New empty intersecting indices In ←− {}
4: for intersecting index i ∈ I do
5: Center of the intersecting cube pc ←− si
6: Predicted UDF of the center u←− hθ3(gθ1(pc))
7: if u < sτ then
8: Subdivide current cube and add new indices to In

9: end if
10: end for
11: I ←− In

12: end for

Algorithm 2 Adapted Marching Cubes

Input: Intersecting indices I ∈ Z+M×3
0 , cube size s, point em-

bedding layer gθ1 , decoder fθ2 , all possible assignments A
Output: Mesh M = (V ,F )

1: Empty mesh M ←− {}
2: for intersecting index i ∈ I do
3: Calculate 8 vertices of the intersecting cube using i and s.
4: Predict 28 binary flags between 8 vertices using Eq.3
5: Minimal cost lmin ←− +∞
6: for possible assignment a ∈ A do
7: Calculate cost l for assignment a using Eq.8
8: if l < lmin then
9: lmin ←− l, amin ←− a

10: end if
11: end for
12: Query the vertices and faces in the lookup table according

to assignment amin and add to M
13: end for

the initial cube size s0 = 1.0/20 = 0.05, the total number
of stages T = 3 and the intersecting threshold τ = 2.

After obtaining intersecting indices I , the next step is to
generate triangles using our adapted Marching Cubes. In
each cube, we first use our model to predict all binary flags
between 8 vertices, then assign binary labels (0/1) to 8 ver-

1



Ours Ours (Cut) Ours (Cut)Ours

Figure 1. Reconstruction results of multi-layer shapes. Our method can reconstruct internal structures of various shapes.

Ours GT

Ours GT GTOurs

Figure 2. Reconstruction results of non-watertight shapes. The non-watertight shapes are difficult for traditional neural implicit func-
tions to reconstruct.

tices based on the binary flags, and finally generate trian-
gles with the lookup table provided by the original March-
ing Cubes. We show the detailed process in Algorithm 2.
Among the inputs of the algorithm, A = {0, 1}8 is the all

possible binary assignments for 8 vertices.

Finally, we utilize the UDF branch to refine the mesh
M = (V ,F ). We sample points on each face and re-
fine mesh vertices by minimizing the UDF values of sam-



Algorithm 3 Mesh refinement
Input: Mesh M = (V ,F ), point embedding layer gθ1 , UDF

layer hθ3 , number of iteration N
Output: Refined mesh M = (V ,F )

1: for iteration n ∈ range(N) do
2: Sample points P from each face, each sampled point is a

linear combination of 3 mesh vertices
3: Optimize mesh vertices V by minimizing Eq.9
4: end for

pled points. We show the detailed process in Algorithm 3.
Among inputs, the number of iteration N is 30.

C. Qualitative Evaluation
Reconstruction results of multi-layer shapes and non-

watertight shapes are shown in Figure 1 and Figure 2.


